Titre : Syndromes parkinsoniens

Syndromes parkinsoniens : Questions médicales fréquentes

Termes MeSH sélectionnés :

Deep Learning
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Syndromes parkinsoniens : Questions médicales les plus fréquentes", "headline": "Syndromes parkinsoniens : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Syndromes parkinsoniens : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-04-25", "dateModified": "2025-04-20", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Syndromes parkinsoniens" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Troubles de la motricité", "url": "https://questionsmedicales.fr/mesh/D009069", "about": { "@type": "MedicalCondition", "name": "Troubles de la motricité", "code": { "@type": "MedicalCode", "code": "D009069", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "C10.228.662" } } }, "hasPart": [ { "@type": "MedicalWebPage", "name": "Syndrome parkinsonien secondaire", "alternateName": "Parkinson Disease, Secondary", "url": "https://questionsmedicales.fr/mesh/D010302", "about": { "@type": "MedicalCondition", "name": "Syndrome parkinsonien secondaire", "code": { "@type": "MedicalCode", "code": "D010302", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "C10.228.662.600.700" } }, "hasPart": [ { "@type": "MedicalWebPage", "name": "Maladie de Parkinson post-encéphalitique", "alternateName": "Parkinson Disease, Postencephalitic", "url": "https://questionsmedicales.fr/mesh/D010301", "about": { "@type": "MedicalCondition", "name": "Maladie de Parkinson post-encéphalitique", "code": { "@type": "MedicalCode", "code": "D010301", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "C10.228.662.600.700.500" } } } ] } ], "about": { "@type": "MedicalCondition", "name": "Syndromes parkinsoniens", "alternateName": "Parkinsonian Disorders", "code": { "@type": "MedicalCode", "code": "D020734", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Sara Hall", "url": "https://questionsmedicales.fr/author/Sara%20Hall", "affiliation": { "@type": "Organization", "name": "Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden." } }, { "@type": "Person", "name": "Shorena Janelidze", "url": "https://questionsmedicales.fr/author/Shorena%20Janelidze", "affiliation": { "@type": "Organization", "name": "Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden." } }, { "@type": "Person", "name": "Oskar Hansson", "url": "https://questionsmedicales.fr/author/Oskar%20Hansson", "affiliation": { "@type": "Organization", "name": "Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden." } }, { "@type": "Person", "name": "Hash Brown Taha", "url": "https://questionsmedicales.fr/author/Hash%20Brown%20Taha", "affiliation": { "@type": "Organization", "name": "Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA." } }, { "@type": "Person", "name": "Carlo Colosimo", "url": "https://questionsmedicales.fr/author/Carlo%20Colosimo", "affiliation": { "@type": "Organization", "name": "Department of Neurology, Santa Maria University Hospital, Terni, Italy. Electronic address: carlo.colosimo@uniroma1.it." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Diabetes detection from non-diabetic retinopathy fundus images using deep learning methodology.", "datePublished": "2024-08-22", "url": "https://questionsmedicales.fr/article/39258195", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.heliyon.2024.e36592" } }, { "@type": "ScholarlyArticle", "name": "Prediction of intraoperative hypotension using deep learning models based on non-invasive monitoring devices.", "datePublished": "2024-08-19", "url": "https://questionsmedicales.fr/article/39158783", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1007/s10877-024-01206-6" } }, { "@type": "ScholarlyArticle", "name": "Exogenous variable driven deep learning models for improved price forecasting of TOP crops in India.", "datePublished": "2024-07-26", "url": "https://questionsmedicales.fr/article/39060335", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1038/s41598-024-68040-3" } }, { "@type": "ScholarlyArticle", "name": "Enabling high throughput deep reinforcement learning with first principles to investigate catalytic reaction mechanisms.", "datePublished": "2024-07-25", "url": "https://questionsmedicales.fr/article/39060277", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1038/s41467-024-50531-6" } }, { "@type": "ScholarlyArticle", "name": "Noninvasive and fast method of calculation for instantaneous wave-free ratio based on haemodynamics and deep learning.", "datePublished": "2024-07-23", "url": "https://questionsmedicales.fr/article/39067137", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.cmpb.2024.108355" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Maladies du système nerveux", "item": "https://questionsmedicales.fr/mesh/D009422" }, { "@type": "ListItem", "position": 3, "name": "Maladies du système nerveux central", "item": "https://questionsmedicales.fr/mesh/D002493" }, { "@type": "ListItem", "position": 4, "name": "Troubles de la motricité", "item": "https://questionsmedicales.fr/mesh/D009069" }, { "@type": "ListItem", "position": 5, "name": "Syndromes parkinsoniens", "item": "https://questionsmedicales.fr/mesh/D020734" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Syndromes parkinsoniens - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Syndromes parkinsoniens", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-13", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Syndromes parkinsoniens", "description": "Comment diagnostiquer un syndrome parkinsonien ?\nQuels tests sont utilisés pour le diagnostic ?\nQuels sont les critères de diagnostic ?\nPeut-on confondre avec d'autres maladies ?\nQuel rôle joue l'historique médical ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Deep+Learning&page=1000#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Syndromes parkinsoniens", "description": "Quels sont les symptômes moteurs principaux ?\nQuels symptômes non moteurs sont fréquents ?\nComment évoluent les symptômes ?\nY a-t-il des symptômes précoces ?\nLes symptômes affectent-ils la qualité de vie ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Deep+Learning&page=1000#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Syndromes parkinsoniens", "description": "Peut-on prévenir les syndromes parkinsoniens ?\nQuel rôle joue l'exercice physique ?\nL'alimentation influence-t-elle le risque ?\nY a-t-il des facteurs environnementaux à considérer ?\nLe stress a-t-il un impact ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Deep+Learning&page=1000#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Syndromes parkinsoniens", "description": "Quels sont les traitements médicamenteux ?\nLa chirurgie est-elle une option ?\nQuels sont les effets secondaires des médicaments ?\nY a-t-il des thérapies complémentaires ?\nComment gérer les symptômes non moteurs ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Deep+Learning&page=1000#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Syndromes parkinsoniens", "description": "Quelles sont les complications courantes ?\nComment les chutes affectent-elles les patients ?\nLes troubles cognitifs sont-ils fréquents ?\nQuelles sont les complications psychologiques ?\nComment gérer les complications ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Deep+Learning&page=1000#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Syndromes parkinsoniens", "description": "Quels sont les principaux facteurs de risque ?\nLe sexe influence-t-il le risque ?\nLes traumatismes crâniens sont-ils un facteur ?\nL'exposition professionnelle joue-t-elle un rôle ?\nY a-t-il des liens avec d'autres maladies ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Deep+Learning&page=1000#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment diagnostiquer un syndrome parkinsonien ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Le diagnostic repose sur l'examen clinique et l'évaluation des symptômes moteurs et non moteurs." } }, { "@type": "Question", "name": "Quels tests sont utilisés pour le diagnostic ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "Des tests d'imagerie comme l'IRM et des évaluations neuropsychologiques peuvent être réalisés." } }, { "@type": "Question", "name": "Quels sont les critères de diagnostic ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Les critères incluent la bradykinésie, la rigidité et les tremblements au repos." } }, { "@type": "Question", "name": "Peut-on confondre avec d'autres maladies ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des maladies comme la maladie de Wilson ou des syndromes atypiques peuvent être confondues." } }, { "@type": "Question", "name": "Quel rôle joue l'historique médical ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "L'historique médical aide à identifier des facteurs de risque et des symptômes précurseurs." } }, { "@type": "Question", "name": "Quels sont les symptômes moteurs principaux ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "Les symptômes moteurs incluent la bradykinésie, la rigidité, et les tremblements." } }, { "@type": "Question", "name": "Quels symptômes non moteurs sont fréquents ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Les symptômes non moteurs incluent la dépression, l'anxiété et les troubles du sommeil." } }, { "@type": "Question", "name": "Comment évoluent les symptômes ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "Les symptômes évoluent progressivement, souvent en s'aggravant avec le temps." } }, { "@type": "Question", "name": "Y a-t-il des symptômes précoces ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des symptômes comme la perte de l'odorat ou des troubles du sommeil peuvent apparaître tôt." } }, { "@type": "Question", "name": "Les symptômes affectent-ils la qualité de vie ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les symptômes peuvent considérablement réduire la qualité de vie des patients." } }, { "@type": "Question", "name": "Peut-on prévenir les syndromes parkinsoniens ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "Il n'existe pas de méthode de prévention garantie, mais un mode de vie sain peut aider." } }, { "@type": "Question", "name": "Quel rôle joue l'exercice physique ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "L'exercice régulier peut améliorer la santé neurologique et retarder l'apparition des symptômes." } }, { "@type": "Question", "name": "L'alimentation influence-t-elle le risque ?", "position": 13, "acceptedAnswer": { "@type": "Answer", "text": "Une alimentation riche en antioxydants peut réduire le risque de développer la maladie." } }, { "@type": "Question", "name": "Y a-t-il des facteurs environnementaux à considérer ?", "position": 14, "acceptedAnswer": { "@type": "Answer", "text": "Oui, l'exposition à certains pesticides et toxines peut augmenter le risque de Parkinson." } }, { "@type": "Question", "name": "Le stress a-t-il un impact ?", "position": 15, "acceptedAnswer": { "@type": "Answer", "text": "Le stress chronique peut aggraver les symptômes et influencer la progression de la maladie." } }, { "@type": "Question", "name": "Quels sont les traitements médicamenteux ?", "position": 16, "acceptedAnswer": { "@type": "Answer", "text": "Les traitements incluent la lévodopa, les agonistes de la dopamine et les inhibiteurs de la COMT." } }, { "@type": "Question", "name": "La chirurgie est-elle une option ?", "position": 17, "acceptedAnswer": { "@type": "Answer", "text": "Oui, la stimulation cérébrale profonde peut être envisagée pour certains patients." } }, { "@type": "Question", "name": "Quels sont les effets secondaires des médicaments ?", "position": 18, "acceptedAnswer": { "@type": "Answer", "text": "Les effets secondaires peuvent inclure des nausées, des vertiges et des mouvements involontaires." } }, { "@type": "Question", "name": "Y a-t-il des thérapies complémentaires ?", "position": 19, "acceptedAnswer": { "@type": "Answer", "text": "Oui, la physiothérapie et l'ergothérapie peuvent aider à améliorer la fonction motrice." } }, { "@type": "Question", "name": "Comment gérer les symptômes non moteurs ?", "position": 20, "acceptedAnswer": { "@type": "Answer", "text": "Des traitements psychologiques et des médicaments peuvent aider à gérer les symptômes non moteurs." } }, { "@type": "Question", "name": "Quelles sont les complications courantes ?", "position": 21, "acceptedAnswer": { "@type": "Answer", "text": "Les complications incluent les chutes, les troubles de la déglutition et les infections." } }, { "@type": "Question", "name": "Comment les chutes affectent-elles les patients ?", "position": 22, "acceptedAnswer": { "@type": "Answer", "text": "Les chutes peuvent entraîner des blessures graves, comme des fractures, et réduire l'autonomie." } }, { "@type": "Question", "name": "Les troubles cognitifs sont-ils fréquents ?", "position": 23, "acceptedAnswer": { "@type": "Answer", "text": "Oui, de nombreux patients développent des troubles cognitifs ou démence au cours de la maladie." } }, { "@type": "Question", "name": "Quelles sont les complications psychologiques ?", "position": 24, "acceptedAnswer": { "@type": "Answer", "text": "Les patients peuvent souffrir de dépression, d'anxiété et d'isolement social." } }, { "@type": "Question", "name": "Comment gérer les complications ?", "position": 25, "acceptedAnswer": { "@type": "Answer", "text": "Une approche multidisciplinaire est essentielle pour gérer les complications efficacement." } }, { "@type": "Question", "name": "Quels sont les principaux facteurs de risque ?", "position": 26, "acceptedAnswer": { "@type": "Answer", "text": "Les facteurs incluent l'âge avancé, les antécédents familiaux et l'exposition à des toxines." } }, { "@type": "Question", "name": "Le sexe influence-t-il le risque ?", "position": 27, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les hommes sont généralement plus susceptibles de développer des syndromes parkinsoniens." } }, { "@type": "Question", "name": "Les traumatismes crâniens sont-ils un facteur ?", "position": 28, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des traumatismes crâniens répétés peuvent augmenter le risque de développer la maladie." } }, { "@type": "Question", "name": "L'exposition professionnelle joue-t-elle un rôle ?", "position": 29, "acceptedAnswer": { "@type": "Answer", "text": "Oui, certaines professions exposant à des produits chimiques peuvent augmenter le risque." } }, { "@type": "Question", "name": "Y a-t-il des liens avec d'autres maladies ?", "position": 30, "acceptedAnswer": { "@type": "Answer", "text": "Certaines maladies auto-immunes et métaboliques peuvent être associées à un risque accru." } } ] } ] }

Sources (10000 au total)

Prediction of intraoperative hypotension using deep learning models based on non-invasive monitoring devices.

Intraoperative hypotension is associated with adverse outcomes. Predicting and proactively managing hypotension can reduce its incidence. Previously, hypotension prediction algorithms using artificial... An open-source database of non-cardiac surgery patients ( https://vitadb.net/dataset ) was used to develop the deep learning algorithm. The algorithm was validated using external data obtained from a ... Data from 4754 and 421 patients were used for algorithm development and external validation, respectively. The fully connected model of Multi-head Attention architecture and the Globally Attentive Loc... A deep learning model utilizing multi-channel non-invasive monitors could predict intraoperative hypotension with high accuracy. Future prospective studies are needed to determine whether this model c...

Noninvasive and fast method of calculation for instantaneous wave-free ratio based on haemodynamics and deep learning.

Instantaneous wave-free ratio (iFR) is a new invasive indicator of myocardial ischaemia, and its diagnostic performance is as good as the "gold standard" of myocardial ischaemia diagnosis: fractional ... In this study we successfully collected clinical data, such as FFR, in 205 stenotic vessels from 186 patients with coronary heart disease. A neural network model was established to predict coronary ar... The results showed that the mean squared error (MSE) between the pressure drop predicted by the neural network value for the coronary artery stenosis model and the ground truth in the test set was 0.0... The results of this study demonstrate the utility of a simplified single-branch model in an iFR...

Deep learning reconstruction for coronary CT angiography in patients with origin anomaly, stent or bypass graft.

To develop and validate a deep learning (DL)-model for automatic reconstruction for coronary CT angiography (CCTA) in patients with origin anomaly, stent or bypass graft.... In this retrospective study, a DL model for automatic CCTA reconstruction was developed with training and validation sets from 6063 and 1962 patients. The algorithm was evaluated on an independent ext... In the external test set, 812 patients (mean age, 64.0 ± 11.6, 100 with origin anomalies, 152 with stents, 105 with bypass grafts) were evaluated. The successful rates for automatic reconstruction wer... The developed DL model enabled accurate automatic CCTA reconstruction of bypass graft, stent and origin anomaly. It significantly reduced post-processing time and improved clinical workflow....

Semi-supervised Double Deep Learning Temporal Risk Prediction (SeDDLeR) with Electronic Health Records.

Risk prediction plays a crucial role in planning for prevention, monitoring, and treatment. Electronic Health Records (EHRs) offer an expansive repository of temporal medical data encompassing both ri... We develop a Semi-supervised Double Deep Learning Temporal Risk Prediction (SeDDLeR) algorithm based on extensive unlabeled longitudinal Electronic Health Records (EHR) data augmented by a limited set... The SeDDLeR algorithm calculates an individualized risk of developing future clinical events over time using each patient's baseline EHR features via the following steps: (1) construction of an initia... SeDDLeR outperforms benchmark risk prediction methods, including Semi-parametric Transformation Model (STM) and DeepHit, with consistently best accuracy across experiments. SeDDLeR achieved the best C... SeDDLeR can train robust risk prediction models in both real-world EHR and synthetic datasets with minimal requirements of labeling event times. It holds the potential to be incorporated for future cl...