Titre : Syndromes parkinsoniens

Syndromes parkinsoniens : Questions médicales fréquentes

Termes MeSH sélectionnés :

Logistic Models
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Syndromes parkinsoniens : Questions médicales les plus fréquentes", "headline": "Syndromes parkinsoniens : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Syndromes parkinsoniens : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-04-25", "dateModified": "2025-04-20", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Syndromes parkinsoniens" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Troubles de la motricité", "url": "https://questionsmedicales.fr/mesh/D009069", "about": { "@type": "MedicalCondition", "name": "Troubles de la motricité", "code": { "@type": "MedicalCode", "code": "D009069", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "C10.228.662" } } }, "hasPart": [ { "@type": "MedicalWebPage", "name": "Syndrome parkinsonien secondaire", "alternateName": "Parkinson Disease, Secondary", "url": "https://questionsmedicales.fr/mesh/D010302", "about": { "@type": "MedicalCondition", "name": "Syndrome parkinsonien secondaire", "code": { "@type": "MedicalCode", "code": "D010302", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "C10.228.662.600.700" } }, "hasPart": [ { "@type": "MedicalWebPage", "name": "Maladie de Parkinson post-encéphalitique", "alternateName": "Parkinson Disease, Postencephalitic", "url": "https://questionsmedicales.fr/mesh/D010301", "about": { "@type": "MedicalCondition", "name": "Maladie de Parkinson post-encéphalitique", "code": { "@type": "MedicalCode", "code": "D010301", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "C10.228.662.600.700.500" } } } ] } ], "about": { "@type": "MedicalCondition", "name": "Syndromes parkinsoniens", "alternateName": "Parkinsonian Disorders", "code": { "@type": "MedicalCode", "code": "D020734", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Sara Hall", "url": "https://questionsmedicales.fr/author/Sara%20Hall", "affiliation": { "@type": "Organization", "name": "Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden." } }, { "@type": "Person", "name": "Shorena Janelidze", "url": "https://questionsmedicales.fr/author/Shorena%20Janelidze", "affiliation": { "@type": "Organization", "name": "Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden." } }, { "@type": "Person", "name": "Oskar Hansson", "url": "https://questionsmedicales.fr/author/Oskar%20Hansson", "affiliation": { "@type": "Organization", "name": "Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden." } }, { "@type": "Person", "name": "Hash Brown Taha", "url": "https://questionsmedicales.fr/author/Hash%20Brown%20Taha", "affiliation": { "@type": "Organization", "name": "Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA." } }, { "@type": "Person", "name": "Carlo Colosimo", "url": "https://questionsmedicales.fr/author/Carlo%20Colosimo", "affiliation": { "@type": "Organization", "name": "Department of Neurology, Santa Maria University Hospital, Terni, Italy. Electronic address: carlo.colosimo@uniroma1.it." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Developing a nomogram model for 3-month prognosis in patients who had an acute ischaemic stroke after intravenous thrombolysis: a multifactor logistic regression model approach.", "datePublished": "2024-07-24", "url": "https://questionsmedicales.fr/article/39053953", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1136/bmjopen-2023-079428" } }, { "@type": "ScholarlyArticle", "name": "Using a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modeling.", "datePublished": "2022-11-23", "url": "https://questionsmedicales.fr/article/36418976", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1186/s12874-022-01774-8" } }, { "@type": "ScholarlyArticle", "name": "A predictive model to analyze the factors affecting the presence of serious chest injury in the occupants on motor vehicle crashes: Logistic regression approach.", "datePublished": "2023-07-12", "url": "https://questionsmedicales.fr/article/37436170", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1080/15389588.2023.2212392" } }, { "@type": "ScholarlyArticle", "name": "Development and validation of risk prediction models for large for gestational age infants using logistic regression and two machine learning algorithms.", "datePublished": "2023-03-08", "url": "https://questionsmedicales.fr/article/36890429", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1111/1753-0407.13375" } }, { "@type": "ScholarlyArticle", "name": "Using logistic regression models to investigate the effects of high-sensitivity cardiac troponin T confounders on ruling in acute myocardial infarction.", "datePublished": "2023-01-26", "url": "https://questionsmedicales.fr/article/36698327", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1515/cclm-2022-1004" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Maladies du système nerveux", "item": "https://questionsmedicales.fr/mesh/D009422" }, { "@type": "ListItem", "position": 3, "name": "Maladies du système nerveux central", "item": "https://questionsmedicales.fr/mesh/D002493" }, { "@type": "ListItem", "position": 4, "name": "Troubles de la motricité", "item": "https://questionsmedicales.fr/mesh/D009069" }, { "@type": "ListItem", "position": 5, "name": "Syndromes parkinsoniens", "item": "https://questionsmedicales.fr/mesh/D020734" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Syndromes parkinsoniens - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Syndromes parkinsoniens", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-12", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Syndromes parkinsoniens", "description": "Comment diagnostiquer un syndrome parkinsonien ?\nQuels tests sont utilisés pour le diagnostic ?\nQuels sont les critères de diagnostic ?\nPeut-on confondre avec d'autres maladies ?\nQuel rôle joue l'historique médical ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Logistic+Models&page=7#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Syndromes parkinsoniens", "description": "Quels sont les symptômes moteurs principaux ?\nQuels symptômes non moteurs sont fréquents ?\nComment évoluent les symptômes ?\nY a-t-il des symptômes précoces ?\nLes symptômes affectent-ils la qualité de vie ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Logistic+Models&page=7#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Syndromes parkinsoniens", "description": "Peut-on prévenir les syndromes parkinsoniens ?\nQuel rôle joue l'exercice physique ?\nL'alimentation influence-t-elle le risque ?\nY a-t-il des facteurs environnementaux à considérer ?\nLe stress a-t-il un impact ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Logistic+Models&page=7#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Syndromes parkinsoniens", "description": "Quels sont les traitements médicamenteux ?\nLa chirurgie est-elle une option ?\nQuels sont les effets secondaires des médicaments ?\nY a-t-il des thérapies complémentaires ?\nComment gérer les symptômes non moteurs ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Logistic+Models&page=7#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Syndromes parkinsoniens", "description": "Quelles sont les complications courantes ?\nComment les chutes affectent-elles les patients ?\nLes troubles cognitifs sont-ils fréquents ?\nQuelles sont les complications psychologiques ?\nComment gérer les complications ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Logistic+Models&page=7#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Syndromes parkinsoniens", "description": "Quels sont les principaux facteurs de risque ?\nLe sexe influence-t-il le risque ?\nLes traumatismes crâniens sont-ils un facteur ?\nL'exposition professionnelle joue-t-elle un rôle ?\nY a-t-il des liens avec d'autres maladies ?", "url": "https://questionsmedicales.fr/mesh/D020734?mesh_terms=Logistic+Models&page=7#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment diagnostiquer un syndrome parkinsonien ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Le diagnostic repose sur l'examen clinique et l'évaluation des symptômes moteurs et non moteurs." } }, { "@type": "Question", "name": "Quels tests sont utilisés pour le diagnostic ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "Des tests d'imagerie comme l'IRM et des évaluations neuropsychologiques peuvent être réalisés." } }, { "@type": "Question", "name": "Quels sont les critères de diagnostic ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Les critères incluent la bradykinésie, la rigidité et les tremblements au repos." } }, { "@type": "Question", "name": "Peut-on confondre avec d'autres maladies ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des maladies comme la maladie de Wilson ou des syndromes atypiques peuvent être confondues." } }, { "@type": "Question", "name": "Quel rôle joue l'historique médical ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "L'historique médical aide à identifier des facteurs de risque et des symptômes précurseurs." } }, { "@type": "Question", "name": "Quels sont les symptômes moteurs principaux ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "Les symptômes moteurs incluent la bradykinésie, la rigidité, et les tremblements." } }, { "@type": "Question", "name": "Quels symptômes non moteurs sont fréquents ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Les symptômes non moteurs incluent la dépression, l'anxiété et les troubles du sommeil." } }, { "@type": "Question", "name": "Comment évoluent les symptômes ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "Les symptômes évoluent progressivement, souvent en s'aggravant avec le temps." } }, { "@type": "Question", "name": "Y a-t-il des symptômes précoces ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des symptômes comme la perte de l'odorat ou des troubles du sommeil peuvent apparaître tôt." } }, { "@type": "Question", "name": "Les symptômes affectent-ils la qualité de vie ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les symptômes peuvent considérablement réduire la qualité de vie des patients." } }, { "@type": "Question", "name": "Peut-on prévenir les syndromes parkinsoniens ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "Il n'existe pas de méthode de prévention garantie, mais un mode de vie sain peut aider." } }, { "@type": "Question", "name": "Quel rôle joue l'exercice physique ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "L'exercice régulier peut améliorer la santé neurologique et retarder l'apparition des symptômes." } }, { "@type": "Question", "name": "L'alimentation influence-t-elle le risque ?", "position": 13, "acceptedAnswer": { "@type": "Answer", "text": "Une alimentation riche en antioxydants peut réduire le risque de développer la maladie." } }, { "@type": "Question", "name": "Y a-t-il des facteurs environnementaux à considérer ?", "position": 14, "acceptedAnswer": { "@type": "Answer", "text": "Oui, l'exposition à certains pesticides et toxines peut augmenter le risque de Parkinson." } }, { "@type": "Question", "name": "Le stress a-t-il un impact ?", "position": 15, "acceptedAnswer": { "@type": "Answer", "text": "Le stress chronique peut aggraver les symptômes et influencer la progression de la maladie." } }, { "@type": "Question", "name": "Quels sont les traitements médicamenteux ?", "position": 16, "acceptedAnswer": { "@type": "Answer", "text": "Les traitements incluent la lévodopa, les agonistes de la dopamine et les inhibiteurs de la COMT." } }, { "@type": "Question", "name": "La chirurgie est-elle une option ?", "position": 17, "acceptedAnswer": { "@type": "Answer", "text": "Oui, la stimulation cérébrale profonde peut être envisagée pour certains patients." } }, { "@type": "Question", "name": "Quels sont les effets secondaires des médicaments ?", "position": 18, "acceptedAnswer": { "@type": "Answer", "text": "Les effets secondaires peuvent inclure des nausées, des vertiges et des mouvements involontaires." } }, { "@type": "Question", "name": "Y a-t-il des thérapies complémentaires ?", "position": 19, "acceptedAnswer": { "@type": "Answer", "text": "Oui, la physiothérapie et l'ergothérapie peuvent aider à améliorer la fonction motrice." } }, { "@type": "Question", "name": "Comment gérer les symptômes non moteurs ?", "position": 20, "acceptedAnswer": { "@type": "Answer", "text": "Des traitements psychologiques et des médicaments peuvent aider à gérer les symptômes non moteurs." } }, { "@type": "Question", "name": "Quelles sont les complications courantes ?", "position": 21, "acceptedAnswer": { "@type": "Answer", "text": "Les complications incluent les chutes, les troubles de la déglutition et les infections." } }, { "@type": "Question", "name": "Comment les chutes affectent-elles les patients ?", "position": 22, "acceptedAnswer": { "@type": "Answer", "text": "Les chutes peuvent entraîner des blessures graves, comme des fractures, et réduire l'autonomie." } }, { "@type": "Question", "name": "Les troubles cognitifs sont-ils fréquents ?", "position": 23, "acceptedAnswer": { "@type": "Answer", "text": "Oui, de nombreux patients développent des troubles cognitifs ou démence au cours de la maladie." } }, { "@type": "Question", "name": "Quelles sont les complications psychologiques ?", "position": 24, "acceptedAnswer": { "@type": "Answer", "text": "Les patients peuvent souffrir de dépression, d'anxiété et d'isolement social." } }, { "@type": "Question", "name": "Comment gérer les complications ?", "position": 25, "acceptedAnswer": { "@type": "Answer", "text": "Une approche multidisciplinaire est essentielle pour gérer les complications efficacement." } }, { "@type": "Question", "name": "Quels sont les principaux facteurs de risque ?", "position": 26, "acceptedAnswer": { "@type": "Answer", "text": "Les facteurs incluent l'âge avancé, les antécédents familiaux et l'exposition à des toxines." } }, { "@type": "Question", "name": "Le sexe influence-t-il le risque ?", "position": 27, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les hommes sont généralement plus susceptibles de développer des syndromes parkinsoniens." } }, { "@type": "Question", "name": "Les traumatismes crâniens sont-ils un facteur ?", "position": 28, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des traumatismes crâniens répétés peuvent augmenter le risque de développer la maladie." } }, { "@type": "Question", "name": "L'exposition professionnelle joue-t-elle un rôle ?", "position": 29, "acceptedAnswer": { "@type": "Answer", "text": "Oui, certaines professions exposant à des produits chimiques peuvent augmenter le risque." } }, { "@type": "Question", "name": "Y a-t-il des liens avec d'autres maladies ?", "position": 30, "acceptedAnswer": { "@type": "Answer", "text": "Certaines maladies auto-immunes et métaboliques peuvent être associées à un risque accru." } } ] } ] }

Sources (10000 au total)

Developing a nomogram model for 3-month prognosis in patients who had an acute ischaemic stroke after intravenous thrombolysis: a multifactor logistic regression model approach.

This study is to establish a nomination graph model for individualised early prediction of the 3-month prognosis of patients who had an acute ischaemic stroke (AIS) receiving intravenous thrombolysis ... For the period from January 2016 through August 2022, 991 patients who had an acute stroke eligible for intravenous thrombolysis were included in the retrospective analysis study. The study was based ... Patients who received treatment from January 2016 to February 2021 were included in the training cohort, and those who received treatment from March 2021 to August 2022 were included in the testing co... Each patient received intravenous thrombolysis within 4.5 hours of onset, with treatment doses divided into standard doses (0.9 mg/kg).... The primary outcome measure was a 3-month adverse outcome (modified Rankin Scale 3-6).... The National Institutes of Health Stroke Scale Score after thrombolysis (OR=1.18; 95% CI: 1.04 to 1.36; p = 0.015), door-to-needle time (OR=1.01; 95% CI: 1.00 to 1.02; p = 0.003), baseline blood gluco... A reliable nomogram model (DGHM2N model) was developed and validated in this study. This nomogram could individually predict the adverse outcome of patients who had an AIS receiving intravenous thromb...

Using a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modeling.

This study illustrates the use of logistic regression and machine learning methods, specifically random forest models, in health services research by analyzing outcomes for a cohort of patients with c... Cohort study using fee-for-service Medicare beneficiaries in 2015 who were newly diagnosed with peripheral artery disease and diabetes mellitus. Exposure variables include whether patients received pr... There were 88,898 fee-for-service Medicare beneficiaries diagnosed with peripheral artery disease and diabetes mellitus in our cohort. The rate of preventative treatments in the first six months follo... The use of random forest models to analyze data and provide predictions for patients holds great potential in identifying modifiable patient-level and health-system factors and cohorts for increased s...

A predictive model to analyze the factors affecting the presence of serious chest injury in the occupants on motor vehicle crashes: Logistic regression approach.

Chest injuries that occur in motor vehicle crashes (MVCs) include rib fractures, pneumothorax, hemothorax, and hemothorax depending on the injury mechanism. Many risk factors are associated with serio... Among 3,697 patients who visited the emergency room in regional emergency medical centers after MVCs between 2011 and 2018, we analyzed data from 1,226 patients with chest injuries. Vehicle damage was... Among the 1,226 patients with chest injuries, 484 (39.5%) had serious chest injuries. Patients in the serious group were older than those in the non-serious group (p=.001). In analyses based on vehicl... Although this study had a major limitation in that the explanatory power of the predictive model was weak due to the small number of samples and many exclusion conditions, it was meaningful in that it...

Development and validation of risk prediction models for large for gestational age infants using logistic regression and two machine learning algorithms.

Large for gestational age (LGA) is one of the adverse outcomes during pregnancy that endangers the life and health of mothers and offspring. We aimed to establish prediction models for LGA at late pre... Data were obtained from an established Chinese pregnant women cohort of 1285 pregnant women. LGA was diagnosed as >90th percentile of birth weight distribution of Chinese corresponding to gestational ... A total of 139 newborns were diagnosed as LGA after birth. The area under the curve (AUC) for the training set is 0.760 (95% confidence interval [CI] 0.706-0.815), and 0.748 (95% CI 0.659-0.837) for t... We established and validated three LGA risk prediction models to screen out the pregnant women with high risk of LGA at the early stage of the third trimester, which showed good prediction power and c...

Using logistic regression models to investigate the effects of high-sensitivity cardiac troponin T confounders on ruling in acute myocardial infarction.

Confounding factors, including sex, age, and renal dysfunction, affect high-sensitivity cardiac troponin T (hs-cTnT) concentrations and the acute myocardial infarction (AMI) diagnosis. This study asse... This retrospective study included a primary derivation cohort of 18,022 emergency department (ED) patients at a US medical center and a validation cohort of 890 ED patients at a Canadian medical cente... The area under the curve of the best-fitted model was 0.95. The model achieved a 90.0% diagnostic accuracy in the validation cohort. The optimal model cutoff yielded comparable performance (90.5% accu... The integrated prediction model incorporating confounding factors does not outperform hs-cTnT delta thresholds. Sex-specific hs-cTnT delta thresholds remain to provide the highest diagnostic accuracy....

Factors related to self-rated health of older adults in rural China: A study based on decision tree and logistic regression model.

This study aimed to explore the related factors of self-rated health (SRH) by using decision tree and logistic regression models among older adults in rural China.... Convenience sampling was employed with 1,223 enrolled respondents who met the inclusion criteria from 10 randomly selected villages in M County in China. The content of the questionnaire covered demog... Notably, 817 (68.7%) subjects had good SRH. The logistic regression model showed that living standard, alcohol consumption, sleep quality, labor, hospitalization, discomfort, the number of chronic dis... Decision tree and logistic regression models complement each other and can describe the factors related to the SRH of the elderly in rural China from different aspects. Our findings indicated that men...

Application of O-RADS Ultrasound Lexicon-Based Logistic Regression Analysis Model in the Diagnosis of Solid Component-Containing Ovarian Malignancies.

To use the logistic regression model to evaluate the value of ultrasound characteristics in the Ovarian-Adnexal Reporting and Data System ultrasound lexicon in determining ovarian solid component-cont... We retrospectively analyzed the data of 172 patients with adnexal masses discovered by ultrasound, and diagnosis was confirmed by postoperative pathological tests from January 2019 to December 2021. T... Of the 172 adnexal tumors, 104 were benign, and 68 were malignant. There were differences in cancer antigen 125, maximum mass diameter, maximum solid component diameter, multilocular cyst with solid c... The logistic regression model containing the maximum solid component diameter, whether acoustic shadows were present in the solid component, number of papillae, and presence/absence of ascites can hel...

Factors influencing the turnover intention for disease control and prevention workers in Northeast China: an empirical analysis based on logistic-ISM model.

This study aimed to determine the current turnover intention among workers at Centers for Disease Control and Prevention (CDCs) in Northeast China and to investigate the factors contributing to this p... The cross-sectional study was conducted in May 2023 across four northeastern provinces of China. The study included a total of 11,912 valid participants who were CDC workers selected using a stratifie... The study found that 28.8% of the respondents reported high turnover intention. The binary logistic regression suggested that the risk factors of turnover intention among employees included gender, ag... Nearly one-third of the respondents expressed a strong desire to resign from their employment. Turnover intention among CDC workers was subject to diverse influences. Early identification, detection, ...

An analysis of factors influencing cognitive dysfunction among older adults in Northwest China based on logistic regression and decision tree modelling.

Cognitive dysfunction is one of the leading causes of disability and dependence in older adults and is a major economic burden on the public health system. The aim of this study was to investigate the... A cross-sectional study was conducted using a multistage sampling method. The questionnaires were distributed through the Elderly Disability Monitoring Platform to older adults aged 60 years and above... A total of 12,494 valid questionnaires were collected, including 2617 from participants in the cognitive dysfunction group and 9877 from participants in the normal cognitive function group. Univariate... Traditional risk factors (including BMI, literacy, and alcohol consumption) and potentially modifiable risk factors (including balance function, ability to care for oneself in daily life, and widowhoo...