Organismes de services de gestion : Questions médicales fréquentes
Nom anglais: Management Service Organizations
Descriptor UI:D021661
Tree Number:N04.452.758.372
Termes MeSH sélectionnés :
Supervised Machine Learning
{
"@context": "https://schema.org",
"@graph": [
{
"@type": "MedicalWebPage",
"name": "Organismes de services de gestion : Questions médicales les plus fréquentes",
"headline": "Organismes de services de gestion : Comprendre les symptômes, diagnostics et traitements",
"description": "Guide complet et accessible sur les Organismes de services de gestion : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.",
"datePublished": "2024-06-03",
"dateModified": "2025-02-28",
"inLanguage": "fr",
"medicalAudience": [
{
"@type": "MedicalAudience",
"name": "Grand public",
"audienceType": "Patient",
"healthCondition": {
"@type": "MedicalCondition",
"name": "Organismes de services de gestion"
},
"suggestedMinAge": 18,
"suggestedGender": "unisex"
},
{
"@type": "MedicalAudience",
"name": "Médecins",
"audienceType": "Physician",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "France"
}
},
{
"@type": "MedicalAudience",
"name": "Chercheurs",
"audienceType": "Researcher",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "International"
}
}
],
"reviewedBy": {
"@type": "Person",
"name": "Dr Olivier Menir",
"jobTitle": "Expert en Médecine",
"description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale",
"url": "/static/pages/docteur-olivier-menir.html",
"alumniOf": {
"@type": "EducationalOrganization",
"name": "Université Paris Descartes"
}
},
"isPartOf": {
"@type": "MedicalWebPage",
"name": "Pratique professionnelle",
"url": "https://questionsmedicales.fr/mesh/D011364",
"about": {
"@type": "MedicalCondition",
"name": "Pratique professionnelle",
"code": {
"@type": "MedicalCode",
"code": "D011364",
"codingSystem": "MeSH"
},
"identifier": {
"@type": "PropertyValue",
"propertyID": "MeSH Tree",
"value": "N04.452.758"
}
}
},
"about": {
"@type": "MedicalCondition",
"name": "Organismes de services de gestion",
"alternateName": "Management Service Organizations",
"code": {
"@type": "MedicalCode",
"code": "D021661",
"codingSystem": "MeSH"
}
},
"author": [
{
"@type": "Person",
"name": "Aminu K Bello",
"url": "https://questionsmedicales.fr/author/Aminu%20K%20Bello",
"affiliation": {
"@type": "Organization",
"name": "Division of Nephrology and Immunology, Department of Medicine, University of Alberta Edmonton, Alberta, Canada."
}
},
{
"@type": "Person",
"name": "Vivekanand Jha",
"url": "https://questionsmedicales.fr/author/Vivekanand%20Jha",
"affiliation": {
"@type": "Organization",
"name": "George Institute for Global Health, University of New South Wales, New Delhi, India."
}
},
{
"@type": "Person",
"name": "Adeera Levin",
"url": "https://questionsmedicales.fr/author/Adeera%20Levin",
"affiliation": {
"@type": "Organization",
"name": "Nephrology Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada."
}
},
{
"@type": "Person",
"name": "Marcello Tonelli",
"url": "https://questionsmedicales.fr/author/Marcello%20Tonelli",
"affiliation": {
"@type": "Organization",
"name": "Department of Medicine, University of Calgary, Calgary, Alberta, Canada."
}
},
{
"@type": "Person",
"name": "Syed Saad",
"url": "https://questionsmedicales.fr/author/Syed%20Saad",
"affiliation": {
"@type": "Organization",
"name": "Department of Medicine, University of Alberta, Edmonton, Alberta, Canada."
}
}
],
"citation": [
{
"@type": "ScholarlyArticle",
"name": "Accounting for age in prediction of discharge destination following elective lumbar fusion: a supervised machine learning approach.",
"datePublished": "2023-04-05",
"url": "https://questionsmedicales.fr/article/37028603",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1016/j.spinee.2023.03.015"
}
},
{
"@type": "ScholarlyArticle",
"name": "Domain-adaptive neural networks improve supervised machine learning based on simulated population genetic data.",
"datePublished": "2023-11-07",
"url": "https://questionsmedicales.fr/article/37934781",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1371/journal.pgen.1011032"
}
},
{
"@type": "ScholarlyArticle",
"name": "Detection of changes in literary writing style using N-grams as style markers and supervised machine learning.",
"datePublished": "2022-07-20",
"url": "https://questionsmedicales.fr/article/35857768",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1371/journal.pone.0267590"
}
},
{
"@type": "ScholarlyArticle",
"name": "Evaluation of supervised machine learning algorithms in predicting the poor anticoagulation control and stable weekly doses of warfarin.",
"datePublished": "2022-10-28",
"url": "https://questionsmedicales.fr/article/36306062",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1007/s11096-022-01471-y"
}
},
{
"@type": "ScholarlyArticle",
"name": "Comparison of the Accuracy of Ground Reaction Force Component Estimation between Supervised Machine Learning and Deep Learning Methods Using Pressure Insoles.",
"datePublished": "2024-08-16",
"url": "https://questionsmedicales.fr/article/39205012",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.3390/s24165318"
}
}
],
"breadcrumb": {
"@type": "BreadcrumbList",
"itemListElement": [
{
"@type": "ListItem",
"position": 1,
"name": "questionsmedicales.fr",
"item": "https://questionsmedicales.fr"
},
{
"@type": "ListItem",
"position": 2,
"name": "Administration des services de santé",
"item": "https://questionsmedicales.fr/mesh/D006298"
},
{
"@type": "ListItem",
"position": 3,
"name": "Organisation et administration",
"item": "https://questionsmedicales.fr/mesh/D009934"
},
{
"@type": "ListItem",
"position": 4,
"name": "Pratique professionnelle",
"item": "https://questionsmedicales.fr/mesh/D011364"
},
{
"@type": "ListItem",
"position": 5,
"name": "Organismes de services de gestion",
"item": "https://questionsmedicales.fr/mesh/D021661"
}
]
}
},
{
"@type": "MedicalWebPage",
"name": "Article complet : Organismes de services de gestion - Questions et réponses",
"headline": "Questions et réponses médicales fréquentes sur Organismes de services de gestion",
"description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.",
"datePublished": "2025-05-11",
"inLanguage": "fr",
"hasPart": [
{
"@type": "MedicalWebPage",
"name": "Diagnostic",
"headline": "Diagnostic sur Organismes de services de gestion",
"description": "Comment identifier un OSG ?\nQuels services offrent les OSG ?\nQuels sont les types d'OSG ?\nComment évaluer l'efficacité d'un OSG ?\nQuels outils utilisent les OSG ?",
"url": "https://questionsmedicales.fr/mesh/D021661?mesh_terms=Supervised+Machine+Learning&page=5#section-diagnostic"
},
{
"@type": "MedicalWebPage",
"name": "Symptômes",
"headline": "Symptômes sur Organismes de services de gestion",
"description": "Quels signes indiquent un besoin d'OSG ?\nComment reconnaître une mauvaise gestion ?\nQuels impacts d'une mauvaise gestion ?\nQuels symptômes d'une surcharge administrative ?\nComment détecter des erreurs fréquentes ?",
"url": "https://questionsmedicales.fr/mesh/D021661?mesh_terms=Supervised+Machine+Learning&page=5#section-symptômes"
},
{
"@type": "MedicalWebPage",
"name": "Prévention",
"headline": "Prévention sur Organismes de services de gestion",
"description": "Comment prévenir les erreurs de gestion ?\nQuelles pratiques recommandées pour les OSG ?\nComment assurer la conformité réglementaire ?\nQuels outils pour la prévention des risques ?\nComment sensibiliser le personnel aux OSG ?",
"url": "https://questionsmedicales.fr/mesh/D021661?mesh_terms=Supervised+Machine+Learning&page=5#section-prévention"
},
{
"@type": "MedicalWebPage",
"name": "Traitements",
"headline": "Traitements sur Organismes de services de gestion",
"description": "Comment un OSG améliore-t-il la gestion ?\nQuels outils de gestion sont recommandés ?\nComment former le personnel à l'OSG ?\nQuels sont les bénéfices d'un OSG ?\nComment évaluer un OSG ?",
"url": "https://questionsmedicales.fr/mesh/D021661?mesh_terms=Supervised+Machine+Learning&page=5#section-traitements"
},
{
"@type": "MedicalWebPage",
"name": "Complications",
"headline": "Complications sur Organismes de services de gestion",
"description": "Quelles complications d'une mauvaise gestion ?\nComment une mauvaise gestion affecte-t-elle les soins ?\nQuels risques d'une surcharge administrative ?\nComment gérer les plaintes des patients ?\nQuelles conséquences d'une non-conformité ?",
"url": "https://questionsmedicales.fr/mesh/D021661?mesh_terms=Supervised+Machine+Learning&page=5#section-complications"
},
{
"@type": "MedicalWebPage",
"name": "Facteurs de risque",
"headline": "Facteurs de risque sur Organismes de services de gestion",
"description": "Quels facteurs augmentent le besoin d'OSG ?\nComment la technologie influence-t-elle les OSG ?\nQuels sont les risques liés à la gestion interne ?\nComment le marché affecte-t-il les OSG ?\nQuels impacts des changements réglementaires ?",
"url": "https://questionsmedicales.fr/mesh/D021661?mesh_terms=Supervised+Machine+Learning&page=5#section-facteurs de risque"
}
]
},
{
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "Comment identifier un OSG ?",
"position": 1,
"acceptedAnswer": {
"@type": "Answer",
"text": "Un OSG est identifié par ses services de gestion administrative et de soutien aux pratiques médicales."
}
},
{
"@type": "Question",
"name": "Quels services offrent les OSG ?",
"position": 2,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les OSG offrent des services tels que la facturation, la gestion des ressources humaines et le soutien technologique."
}
},
{
"@type": "Question",
"name": "Quels sont les types d'OSG ?",
"position": 3,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les types d'OSG incluent ceux spécialisés en facturation, en gestion de la qualité et en conformité réglementaire."
}
},
{
"@type": "Question",
"name": "Comment évaluer l'efficacité d'un OSG ?",
"position": 4,
"acceptedAnswer": {
"@type": "Answer",
"text": "L'efficacité d'un OSG peut être évaluée par des indicateurs de performance tels que la satisfaction des clients et la réduction des coûts."
}
},
{
"@type": "Question",
"name": "Quels outils utilisent les OSG ?",
"position": 5,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les OSG utilisent des logiciels de gestion, des systèmes de facturation et des plateformes de communication."
}
},
{
"@type": "Question",
"name": "Quels signes indiquent un besoin d'OSG ?",
"position": 6,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des signes incluent une surcharge administrative, des erreurs fréquentes et une mauvaise gestion du temps."
}
},
{
"@type": "Question",
"name": "Comment reconnaître une mauvaise gestion ?",
"position": 7,
"acceptedAnswer": {
"@type": "Answer",
"text": "Une mauvaise gestion se manifeste par des retards dans les paiements, des plaintes de patients et des audits défavorables."
}
},
{
"@type": "Question",
"name": "Quels impacts d'une mauvaise gestion ?",
"position": 8,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les impacts incluent une baisse de la qualité des soins, une insatisfaction des patients et des pertes financières."
}
},
{
"@type": "Question",
"name": "Quels symptômes d'une surcharge administrative ?",
"position": 9,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les symptômes incluent le stress du personnel, des délais prolongés et une communication inefficace."
}
},
{
"@type": "Question",
"name": "Comment détecter des erreurs fréquentes ?",
"position": 10,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des audits réguliers et des retours d'expérience des employés aident à détecter les erreurs fréquentes."
}
},
{
"@type": "Question",
"name": "Comment prévenir les erreurs de gestion ?",
"position": 11,
"acceptedAnswer": {
"@type": "Answer",
"text": "La prévention passe par des formations régulières, des audits et l'utilisation de technologies adaptées."
}
},
{
"@type": "Question",
"name": "Quelles pratiques recommandées pour les OSG ?",
"position": 12,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les pratiques recommandées incluent la standardisation des processus et la mise en place de contrôles internes."
}
},
{
"@type": "Question",
"name": "Comment assurer la conformité réglementaire ?",
"position": 13,
"acceptedAnswer": {
"@type": "Answer",
"text": "Assurer la conformité nécessite des audits réguliers et une mise à jour continue des connaissances réglementaires."
}
},
{
"@type": "Question",
"name": "Quels outils pour la prévention des risques ?",
"position": 14,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des outils comme les logiciels de gestion des risques et les plateformes de communication sont utiles."
}
},
{
"@type": "Question",
"name": "Comment sensibiliser le personnel aux OSG ?",
"position": 15,
"acceptedAnswer": {
"@type": "Answer",
"text": "La sensibilisation peut se faire par des formations, des réunions d'équipe et des bulletins d'information."
}
},
{
"@type": "Question",
"name": "Comment un OSG améliore-t-il la gestion ?",
"position": 16,
"acceptedAnswer": {
"@type": "Answer",
"text": "Un OSG améliore la gestion en optimisant les processus, réduisant les coûts et augmentant l'efficacité."
}
},
{
"@type": "Question",
"name": "Quels outils de gestion sont recommandés ?",
"position": 17,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des outils comme les logiciels de gestion de cabinet et les systèmes de facturation sont recommandés."
}
},
{
"@type": "Question",
"name": "Comment former le personnel à l'OSG ?",
"position": 18,
"acceptedAnswer": {
"@type": "Answer",
"text": "La formation peut inclure des ateliers, des sessions de coaching et des modules en ligne sur les outils de gestion."
}
},
{
"@type": "Question",
"name": "Quels sont les bénéfices d'un OSG ?",
"position": 19,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les bénéfices incluent une meilleure gestion des ressources, une réduction des coûts et une satisfaction accrue des patients."
}
},
{
"@type": "Question",
"name": "Comment évaluer un OSG ?",
"position": 20,
"acceptedAnswer": {
"@type": "Answer",
"text": "L'évaluation se fait par des indicateurs de performance, des retours d'expérience et des audits réguliers."
}
},
{
"@type": "Question",
"name": "Quelles complications d'une mauvaise gestion ?",
"position": 21,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les complications incluent des pertes financières, des plaintes de patients et des sanctions réglementaires."
}
},
{
"@type": "Question",
"name": "Comment une mauvaise gestion affecte-t-elle les soins ?",
"position": 22,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle peut entraîner des retards dans les soins, une qualité inférieure et une insatisfaction des patients."
}
},
{
"@type": "Question",
"name": "Quels risques d'une surcharge administrative ?",
"position": 23,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les risques incluent le burnout du personnel, des erreurs de traitement et une communication défaillante."
}
},
{
"@type": "Question",
"name": "Comment gérer les plaintes des patients ?",
"position": 24,
"acceptedAnswer": {
"@type": "Answer",
"text": "La gestion des plaintes nécessite une écoute active, une réponse rapide et des actions correctives."
}
},
{
"@type": "Question",
"name": "Quelles conséquences d'une non-conformité ?",
"position": 25,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les conséquences incluent des amendes, des pertes de licence et une réputation ternie."
}
},
{
"@type": "Question",
"name": "Quels facteurs augmentent le besoin d'OSG ?",
"position": 26,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les facteurs incluent la taille de la pratique, la complexité des opérations et les changements réglementaires."
}
},
{
"@type": "Question",
"name": "Comment la technologie influence-t-elle les OSG ?",
"position": 27,
"acceptedAnswer": {
"@type": "Answer",
"text": "La technologie influence les OSG en améliorant l'efficacité, la communication et la gestion des données."
}
},
{
"@type": "Question",
"name": "Quels sont les risques liés à la gestion interne ?",
"position": 28,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les risques incluent le manque de formation, la résistance au changement et des processus obsolètes."
}
},
{
"@type": "Question",
"name": "Comment le marché affecte-t-il les OSG ?",
"position": 29,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les fluctuations du marché peuvent influencer la demande de services et la rentabilité des OSG."
}
},
{
"@type": "Question",
"name": "Quels impacts des changements réglementaires ?",
"position": 30,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les changements réglementaires peuvent nécessiter des ajustements rapides et des formations supplémentaires."
}
}
]
}
]
}
The number of elective spinal fusion procedures performed each year continues to grow, making risk factors for post-operative complications following this procedure increasingly clinically relevant. N...
To identify aged-adjusted risk factors for nonhome discharge following elective lumbar fusion through the utilization of Machine Learning-generated predictions within stratified age groupings....
Retrospective Database Study....
The American College of Surgeons National Quality Improvement Program (ACS-NSQIP) database years 2008 to 2018....
Postoperative discharge destination....
ACS-NSQIP was queried to identify adult patients undergoing elective lumbar spinal fusion from 2008 to 2018. Patients were then stratified into the following age ranges: 30 to 44 years, 45 to 64 years...
Prediction of NHD was performed with average AUCs of 0.591, 0.681, and 0.693 for those aged 30 to 44, 45 to 64, and ≥65 years respectively. In patients aged 30 to 44, operative time (p<.001), African ...
Application of ML algorithms to the ACS-NSQIP dataset identified a number of highly predictive and age-adjusted variables for NHD. As age is a risk factor for NHD following spinal fusion, our findings...
Investigators have recently introduced powerful methods for population genetic inference that rely on supervised machine learning from simulated data. Despite their performance advantages, these metho...
The analysis of an author's writing style implies the characterization and identification of the style in terms of a set of features commonly called linguistic features. The analysis can be extrinsic,...
Machine learning algorithms (MLAs) carry a huge potential in identifying predicting factors and are being explored for their utility in the field of personalized medicine....
We aimed to investigate MLAs for identifying predictors (clinical and genetic) of poor anticoagulation status (ACS) and stable weekly warfarin dose (SWWD)....
Clinical factors, in addition to the CYP2C9, VKORC1, and CYP4F2 genotypes, were obtained for patients receiving warfarin for at least the previous six months. The C5.0 decision tree classification alg...
In the C5.0 classification decision tree, the CYP4F2 genotype was the strongest predictor of ACS (AUROC = 0.53). In the CART analysis of SWWD, VKORC1 polymorphisms were the most significant predictor,...
Genetic and non-genetic predictive factors were identified by the MLAs for ACS and SWWD. Further, the need to externally validate the MLAs in a prospective study was highlighted....
The three Ground Reaction Force (GRF) components can be estimated using pressure insole sensors. In this paper, we compare the accuracy of estimating GRF components for both feet using six methods: th...
In light of limited intensive care capacities and a lack of accurate prognostic tools to advise caregivers and family members responsibly, this study aims to determine whether automated cerebral CT (C...
In this monocentric, retrospective cohort study, a supervised machine learning classifier based on an elastic net regularized logistic regression model for gray matter alterations on nonenhanced CCT o...
Of 279 adult patients, 132 who underwent CCT within 14 days of cardiac arrest with good imaging quality were identified. Our approach discriminated between favorable and poor outcomes with an area und...
Our data show that machine learning-assisted gray matter analysis of CCT images offers prognostic information after out-of-hospital cardiac arrest. Thus, CCT gray matter analysis could become a reliab...
Neurodegenerative disease often affects speech. Speech acoustics can be used as objective clinical markers of pathology. Previous investigations of pathological speech have primarily compared controls...
Anger can be broken down into different elements: a transitory state (state anger), a stable personality feature (trait anger), a tendency to express it (anger-out), or to suppress it (anger-in), and ...
Depression is common in the human immunodeficiency virus (HIV)-hepatitis C virus (HCV) co-infected population. Demographic, behavioural, and clinical data collected in research settings may be of help...
We used data from the Canadian Co-infection Cohort, a multicentre prospective cohort, and its associated sub-study on Food Security (FS). The Center for Epidemiologic Studies Depression Scale-10 (CES-...
We included 1,934 FS sub-study visits from 717 participants who were predominantly male (73%), white (76%), unemployed (73%), and high school educated (52%). At the first visit, median age was 49 year...
We developed a prediction algorithm that could be instrumental in identifying individuals at risk for depression in the HIV-HCV co-infected population in research settings. Development of such machine...
The Salicornia L. has been considered one of the most taxonomically challenging genera due to high morphological plasticity, intergradation between related species, and lack of diagnostic features in ...