{
"@context": "https://schema.org",
"@graph": [
{
"@type": "MedicalWebPage",
"name": "Médecine régénérative : Questions médicales les plus fréquentes",
"headline": "Médecine régénérative : Comprendre les symptômes, diagnostics et traitements",
"description": "Guide complet et accessible sur les Médecine régénérative : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.",
"datePublished": "2024-02-18",
"dateModified": "2025-02-12",
"inLanguage": "fr",
"medicalAudience": [
{
"@type": "MedicalAudience",
"name": "Grand public",
"audienceType": "Patient",
"healthCondition": {
"@type": "MedicalCondition",
"name": "Médecine régénérative"
},
"suggestedMinAge": 18,
"suggestedGender": "unisex"
},
{
"@type": "MedicalAudience",
"name": "Médecins",
"audienceType": "Physician",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "France"
}
},
{
"@type": "MedicalAudience",
"name": "Chercheurs",
"audienceType": "Researcher",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "International"
}
}
],
"reviewedBy": {
"@type": "Person",
"name": "Dr Olivier Menir",
"jobTitle": "Expert en Médecine",
"description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale",
"url": "/static/pages/docteur-olivier-menir.html",
"alumniOf": {
"@type": "EducationalOrganization",
"name": "Université Paris Descartes"
}
},
"isPartOf": {
"@type": "MedicalWebPage",
"name": "Médecine",
"url": "https://questionsmedicales.fr/mesh/D008511",
"about": {
"@type": "MedicalCondition",
"name": "Médecine",
"code": {
"@type": "MedicalCode",
"code": "D008511",
"codingSystem": "MeSH"
},
"identifier": {
"@type": "PropertyValue",
"propertyID": "MeSH Tree",
"value": "H02.403"
}
}
},
"about": {
"@type": "MedicalCondition",
"name": "Médecine régénérative",
"alternateName": "Regenerative Medicine",
"code": {
"@type": "MedicalCode",
"code": "D044968",
"codingSystem": "MeSH"
}
},
"author": [
{
"@type": "Person",
"name": "Satoshi Hosoya",
"url": "https://questionsmedicales.fr/author/Satoshi%20Hosoya",
"affiliation": {
"@type": "Organization",
"name": "Department of Obstetrics and Gynecology, Jikei University School of Medicine, 3-25-8, Nishishinbashi, Minato, Tokyo 105-8461, Japan."
}
},
{
"@type": "Person",
"name": "Kazuki Morita",
"url": "https://questionsmedicales.fr/author/Kazuki%20Morita",
"affiliation": {
"@type": "Organization",
"name": "Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo, Tokyo 113-8510, Japan."
}
},
{
"@type": "Person",
"name": "Iris Ribitsch",
"url": "https://questionsmedicales.fr/author/Iris%20Ribitsch",
"affiliation": {
"@type": "Organization",
"name": "Veterinary Tissue Engineering and Regenerative Medicine lab, Vienna Veterinary School, Vienna, Austria."
}
},
{
"@type": "Person",
"name": "Paul Kwong Hang Tam",
"url": "https://questionsmedicales.fr/author/Paul%20Kwong%20Hang%20Tam",
"affiliation": {
"@type": "Organization",
"name": "Faculty of Medicine, Macau University of Science and Technology, Macau Special Administrative Region, China; Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China. Electronic address: pkhtam@must.edu.mo."
}
},
{
"@type": "Person",
"name": "Kenneth Kak Yuen Wong",
"url": "https://questionsmedicales.fr/author/Kenneth%20Kak%20Yuen%20Wong",
"affiliation": {
"@type": "Organization",
"name": "Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China."
}
}
],
"citation": [
{
"@type": "ScholarlyArticle",
"name": "Accounting for age in prediction of discharge destination following elective lumbar fusion: a supervised machine learning approach.",
"datePublished": "2023-04-05",
"url": "https://questionsmedicales.fr/article/37028603",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1016/j.spinee.2023.03.015"
}
},
{
"@type": "ScholarlyArticle",
"name": "Domain-adaptive neural networks improve supervised machine learning based on simulated population genetic data.",
"datePublished": "2023-11-07",
"url": "https://questionsmedicales.fr/article/37934781",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1371/journal.pgen.1011032"
}
},
{
"@type": "ScholarlyArticle",
"name": "Detection of changes in literary writing style using N-grams as style markers and supervised machine learning.",
"datePublished": "2022-07-20",
"url": "https://questionsmedicales.fr/article/35857768",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1371/journal.pone.0267590"
}
},
{
"@type": "ScholarlyArticle",
"name": "Evaluation of supervised machine learning algorithms in predicting the poor anticoagulation control and stable weekly doses of warfarin.",
"datePublished": "2022-10-28",
"url": "https://questionsmedicales.fr/article/36306062",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1007/s11096-022-01471-y"
}
},
{
"@type": "ScholarlyArticle",
"name": "Comparison of the Accuracy of Ground Reaction Force Component Estimation between Supervised Machine Learning and Deep Learning Methods Using Pressure Insoles.",
"datePublished": "2024-08-16",
"url": "https://questionsmedicales.fr/article/39205012",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.3390/s24165318"
}
}
],
"breadcrumb": {
"@type": "BreadcrumbList",
"itemListElement": [
{
"@type": "ListItem",
"position": 1,
"name": "questionsmedicales.fr",
"item": "https://questionsmedicales.fr"
},
{
"@type": "ListItem",
"position": 2,
"name": "Professions de santé",
"item": "https://questionsmedicales.fr/mesh/D006281"
},
{
"@type": "ListItem",
"position": 3,
"name": "Médecine",
"item": "https://questionsmedicales.fr/mesh/D008511"
},
{
"@type": "ListItem",
"position": 4,
"name": "Médecine régénérative",
"item": "https://questionsmedicales.fr/mesh/D044968"
}
]
}
},
{
"@type": "MedicalWebPage",
"name": "Article complet : Médecine régénérative - Questions et réponses",
"headline": "Questions et réponses médicales fréquentes sur Médecine régénérative",
"description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.",
"datePublished": "2025-05-07",
"inLanguage": "fr",
"hasPart": [
{
"@type": "MedicalWebPage",
"name": "Diagnostic",
"headline": "Diagnostic sur Médecine régénérative",
"description": "Comment diagnostiquer une maladie nécessitant la médecine régénérative ?\nQuels tests sont utilisés pour évaluer les tissus endommagés ?\nQuels signes cliniques indiquent un besoin de régénération ?\nLes marqueurs biologiques sont-ils utiles dans le diagnostic ?\nComment évaluer la gravité des lésions tissulaires ?",
"url": "https://questionsmedicales.fr/mesh/D044968?mesh_terms=Supervised+Machine+Learning&page=5#section-diagnostic"
},
{
"@type": "MedicalWebPage",
"name": "Symptômes",
"headline": "Symptômes sur Médecine régénérative",
"description": "Quels symptômes nécessitent une intervention en médecine régénérative ?\nLes symptômes varient-ils selon le type de tissu affecté ?\nComment la douleur est-elle liée à la régénération des tissus ?\nQuels symptômes peuvent indiquer une défaillance des traitements régénératifs ?\nLes symptômes psychologiques sont-ils pris en compte ?",
"url": "https://questionsmedicales.fr/mesh/D044968?mesh_terms=Supervised+Machine+Learning&page=5#section-symptômes"
},
{
"@type": "MedicalWebPage",
"name": "Prévention",
"headline": "Prévention sur Médecine régénérative",
"description": "Comment prévenir les maladies nécessitant la médecine régénérative ?\nLes vaccinations jouent-elles un rôle préventif ?\nComment la gestion du stress contribue-t-elle à la prévention ?\nLes dépistages réguliers sont-ils importants ?\nL'éducation à la santé est-elle cruciale pour la prévention ?",
"url": "https://questionsmedicales.fr/mesh/D044968?mesh_terms=Supervised+Machine+Learning&page=5#section-prévention"
},
{
"@type": "MedicalWebPage",
"name": "Traitements",
"headline": "Traitements sur Médecine régénérative",
"description": "Quels traitements sont courants en médecine régénérative ?\nComment les cellules souches sont-elles utilisées ?\nLes traitements régénératifs sont-ils personnalisés ?\nQuels sont les risques associés aux traitements régénératifs ?\nLa thérapie génique fait-elle partie de la médecine régénérative ?",
"url": "https://questionsmedicales.fr/mesh/D044968?mesh_terms=Supervised+Machine+Learning&page=5#section-traitements"
},
{
"@type": "MedicalWebPage",
"name": "Complications",
"headline": "Complications sur Médecine régénérative",
"description": "Quelles complications peuvent survenir après un traitement régénératif ?\nComment gérer les complications post-traitement ?\nLes complications sont-elles fréquentes en médecine régénérative ?\nQuels signes indiquent une complication après un traitement ?\nLes complications peuvent-elles affecter le succès du traitement ?",
"url": "https://questionsmedicales.fr/mesh/D044968?mesh_terms=Supervised+Machine+Learning&page=5#section-complications"
},
{
"@type": "MedicalWebPage",
"name": "Facteurs de risque",
"headline": "Facteurs de risque sur Médecine régénérative",
"description": "Quels facteurs augmentent le risque de maladies régénératives ?\nLe tabagisme est-il un facteur de risque ?\nL'obésité influence-t-elle le risque de maladies régénératives ?\nLe stress chronique est-il un facteur de risque ?\nLes maladies auto-immunes augmentent-elles le risque ?",
"url": "https://questionsmedicales.fr/mesh/D044968?mesh_terms=Supervised+Machine+Learning&page=5#section-facteurs de risque"
}
]
},
{
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "Comment diagnostiquer une maladie nécessitant la médecine régénérative ?",
"position": 1,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des examens d'imagerie et des tests biologiques sont utilisés pour évaluer les dommages."
}
},
{
"@type": "Question",
"name": "Quels tests sont utilisés pour évaluer les tissus endommagés ?",
"position": 2,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les biopsies et les IRM permettent d'analyser la structure et la fonction des tissus."
}
},
{
"@type": "Question",
"name": "Quels signes cliniques indiquent un besoin de régénération ?",
"position": 3,
"acceptedAnswer": {
"@type": "Answer",
"text": "Douleur persistante, perte de fonction et inflammation chronique peuvent indiquer ce besoin."
}
},
{
"@type": "Question",
"name": "Les marqueurs biologiques sont-ils utiles dans le diagnostic ?",
"position": 4,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, certains marqueurs peuvent indiquer des lésions tissulaires et guider le traitement."
}
},
{
"@type": "Question",
"name": "Comment évaluer la gravité des lésions tissulaires ?",
"position": 5,
"acceptedAnswer": {
"@type": "Answer",
"text": "L'évaluation se fait par des tests fonctionnels et des examens d'imagerie avancés."
}
},
{
"@type": "Question",
"name": "Quels symptômes nécessitent une intervention en médecine régénérative ?",
"position": 6,
"acceptedAnswer": {
"@type": "Answer",
"text": "Symptômes comme la douleur chronique, la faiblesse musculaire et la mobilité réduite."
}
},
{
"@type": "Question",
"name": "Les symptômes varient-ils selon le type de tissu affecté ?",
"position": 7,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, les symptômes dépendent du tissu touché, comme les muscles, les nerfs ou les os."
}
},
{
"@type": "Question",
"name": "Comment la douleur est-elle liée à la régénération des tissus ?",
"position": 8,
"acceptedAnswer": {
"@type": "Answer",
"text": "La douleur peut indiquer une inflammation ou des lésions, signalant un besoin de régénération."
}
},
{
"@type": "Question",
"name": "Quels symptômes peuvent indiquer une défaillance des traitements régénératifs ?",
"position": 9,
"acceptedAnswer": {
"@type": "Answer",
"text": "Une aggravation des symptômes ou l'absence d'amélioration après le traitement."
}
},
{
"@type": "Question",
"name": "Les symptômes psychologiques sont-ils pris en compte ?",
"position": 10,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, l'anxiété et la dépression peuvent accompagner des maladies nécessitant la régénération."
}
},
{
"@type": "Question",
"name": "Comment prévenir les maladies nécessitant la médecine régénérative ?",
"position": 11,
"acceptedAnswer": {
"@type": "Answer",
"text": "Un mode de vie sain, l'exercice régulier et une alimentation équilibrée sont essentiels."
}
},
{
"@type": "Question",
"name": "Les vaccinations jouent-elles un rôle préventif ?",
"position": 12,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elles aident à prévenir certaines infections qui peuvent endommager les tissus."
}
},
{
"@type": "Question",
"name": "Comment la gestion du stress contribue-t-elle à la prévention ?",
"position": 13,
"acceptedAnswer": {
"@type": "Answer",
"text": "La gestion du stress peut réduire l'inflammation et améliorer la santé globale des tissus."
}
},
{
"@type": "Question",
"name": "Les dépistages réguliers sont-ils importants ?",
"position": 14,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, ils permettent de détecter précocement des maladies pouvant nécessiter une régénération."
}
},
{
"@type": "Question",
"name": "L'éducation à la santé est-elle cruciale pour la prévention ?",
"position": 15,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elle aide les individus à comprendre les risques et à adopter des comportements sains."
}
},
{
"@type": "Question",
"name": "Quels traitements sont courants en médecine régénérative ?",
"position": 16,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les thérapies cellulaires, les greffes d'organes et les biomatériaux sont courants."
}
},
{
"@type": "Question",
"name": "Comment les cellules souches sont-elles utilisées ?",
"position": 17,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles sont utilisées pour régénérer des tissus endommagés et traiter diverses maladies."
}
},
{
"@type": "Question",
"name": "Les traitements régénératifs sont-ils personnalisés ?",
"position": 18,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, ils sont souvent adaptés aux besoins spécifiques du patient et de sa condition."
}
},
{
"@type": "Question",
"name": "Quels sont les risques associés aux traitements régénératifs ?",
"position": 19,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les risques incluent des infections, des réactions immunitaires et des complications chirurgicales."
}
},
{
"@type": "Question",
"name": "La thérapie génique fait-elle partie de la médecine régénérative ?",
"position": 20,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elle vise à corriger des anomalies génétiques pour restaurer la fonction cellulaire."
}
},
{
"@type": "Question",
"name": "Quelles complications peuvent survenir après un traitement régénératif ?",
"position": 21,
"acceptedAnswer": {
"@type": "Answer",
"text": "Infections, rejet de greffe et complications liées à la cicatrisation peuvent survenir."
}
},
{
"@type": "Question",
"name": "Comment gérer les complications post-traitement ?",
"position": 22,
"acceptedAnswer": {
"@type": "Answer",
"text": "Un suivi médical régulier et des traitements symptomatiques sont essentiels pour la gestion."
}
},
{
"@type": "Question",
"name": "Les complications sont-elles fréquentes en médecine régénérative ?",
"position": 23,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles peuvent survenir, mais les avancées technologiques réduisent leur fréquence."
}
},
{
"@type": "Question",
"name": "Quels signes indiquent une complication après un traitement ?",
"position": 24,
"acceptedAnswer": {
"@type": "Answer",
"text": "Rougeur, douleur accrue, fièvre ou écoulement peuvent indiquer une complication."
}
},
{
"@type": "Question",
"name": "Les complications peuvent-elles affecter le succès du traitement ?",
"position": 25,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elles peuvent compromettre l'efficacité du traitement et nécessiter des ajustements."
}
},
{
"@type": "Question",
"name": "Quels facteurs augmentent le risque de maladies régénératives ?",
"position": 26,
"acceptedAnswer": {
"@type": "Answer",
"text": "L'âge, le mode de vie sédentaire et les antécédents familiaux sont des facteurs de risque."
}
},
{
"@type": "Question",
"name": "Le tabagisme est-il un facteur de risque ?",
"position": 27,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, le tabagisme contribue à des maladies qui peuvent nécessiter des traitements régénératifs."
}
},
{
"@type": "Question",
"name": "L'obésité influence-t-elle le risque de maladies régénératives ?",
"position": 28,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, l'obésité est associée à des maladies chroniques qui peuvent nécessiter une régénération."
}
},
{
"@type": "Question",
"name": "Le stress chronique est-il un facteur de risque ?",
"position": 29,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, le stress chronique peut aggraver des conditions de santé et augmenter le besoin de régénération."
}
},
{
"@type": "Question",
"name": "Les maladies auto-immunes augmentent-elles le risque ?",
"position": 30,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elles peuvent endommager les tissus et nécessiter des interventions régénératives."
}
}
]
}
]
}
The number of elective spinal fusion procedures performed each year continues to grow, making risk factors for post-operative complications following this procedure increasingly clinically relevant. N...
To identify aged-adjusted risk factors for nonhome discharge following elective lumbar fusion through the utilization of Machine Learning-generated predictions within stratified age groupings....
Retrospective Database Study....
The American College of Surgeons National Quality Improvement Program (ACS-NSQIP) database years 2008 to 2018....
Postoperative discharge destination....
ACS-NSQIP was queried to identify adult patients undergoing elective lumbar spinal fusion from 2008 to 2018. Patients were then stratified into the following age ranges: 30 to 44 years, 45 to 64 years...
Prediction of NHD was performed with average AUCs of 0.591, 0.681, and 0.693 for those aged 30 to 44, 45 to 64, and ≥65 years respectively. In patients aged 30 to 44, operative time (p<.001), African ...
Application of ML algorithms to the ACS-NSQIP dataset identified a number of highly predictive and age-adjusted variables for NHD. As age is a risk factor for NHD following spinal fusion, our findings...
Investigators have recently introduced powerful methods for population genetic inference that rely on supervised machine learning from simulated data. Despite their performance advantages, these metho...
The analysis of an author's writing style implies the characterization and identification of the style in terms of a set of features commonly called linguistic features. The analysis can be extrinsic,...
Machine learning algorithms (MLAs) carry a huge potential in identifying predicting factors and are being explored for their utility in the field of personalized medicine....
We aimed to investigate MLAs for identifying predictors (clinical and genetic) of poor anticoagulation status (ACS) and stable weekly warfarin dose (SWWD)....
Clinical factors, in addition to the CYP2C9, VKORC1, and CYP4F2 genotypes, were obtained for patients receiving warfarin for at least the previous six months. The C5.0 decision tree classification alg...
In the C5.0 classification decision tree, the CYP4F2 genotype was the strongest predictor of ACS (AUROC = 0.53). In the CART analysis of SWWD, VKORC1 polymorphisms were the most significant predictor,...
Genetic and non-genetic predictive factors were identified by the MLAs for ACS and SWWD. Further, the need to externally validate the MLAs in a prospective study was highlighted....
The three Ground Reaction Force (GRF) components can be estimated using pressure insole sensors. In this paper, we compare the accuracy of estimating GRF components for both feet using six methods: th...
In light of limited intensive care capacities and a lack of accurate prognostic tools to advise caregivers and family members responsibly, this study aims to determine whether automated cerebral CT (C...
In this monocentric, retrospective cohort study, a supervised machine learning classifier based on an elastic net regularized logistic regression model for gray matter alterations on nonenhanced CCT o...
Of 279 adult patients, 132 who underwent CCT within 14 days of cardiac arrest with good imaging quality were identified. Our approach discriminated between favorable and poor outcomes with an area und...
Our data show that machine learning-assisted gray matter analysis of CCT images offers prognostic information after out-of-hospital cardiac arrest. Thus, CCT gray matter analysis could become a reliab...
Neurodegenerative disease often affects speech. Speech acoustics can be used as objective clinical markers of pathology. Previous investigations of pathological speech have primarily compared controls...
Anger can be broken down into different elements: a transitory state (state anger), a stable personality feature (trait anger), a tendency to express it (anger-out), or to suppress it (anger-in), and ...
Depression is common in the human immunodeficiency virus (HIV)-hepatitis C virus (HCV) co-infected population. Demographic, behavioural, and clinical data collected in research settings may be of help...
We used data from the Canadian Co-infection Cohort, a multicentre prospective cohort, and its associated sub-study on Food Security (FS). The Center for Epidemiologic Studies Depression Scale-10 (CES-...
We included 1,934 FS sub-study visits from 717 participants who were predominantly male (73%), white (76%), unemployed (73%), and high school educated (52%). At the first visit, median age was 49 year...
We developed a prediction algorithm that could be instrumental in identifying individuals at risk for depression in the HIV-HCV co-infected population in research settings. Development of such machine...
The Salicornia L. has been considered one of the most taxonomically challenging genera due to high morphological plasticity, intergradation between related species, and lack of diagnostic features in ...