Titre : Remodelage auriculaire

Remodelage auriculaire : Questions médicales fréquentes

Termes MeSH sélectionnés :

Natural Language Processing
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Remodelage auriculaire : Questions médicales les plus fréquentes", "headline": "Remodelage auriculaire : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Remodelage auriculaire : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-04-12", "dateModified": "2025-04-07", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Remodelage auriculaire" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Fonction auriculaire", "url": "https://questionsmedicales.fr/mesh/D016275", "about": { "@type": "MedicalCondition", "name": "Fonction auriculaire", "code": { "@type": "MedicalCode", "code": "D016275", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "G09.330.040" } } }, "about": { "@type": "MedicalCondition", "name": "Remodelage auriculaire", "alternateName": "Atrial Remodeling", "code": { "@type": "MedicalCode", "code": "D064752", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Aleksandr Voskoboinik", "url": "https://questionsmedicales.fr/author/Aleksandr%20Voskoboinik", "affiliation": { "@type": "Organization", "name": "Section of Cardiac Electrophysiology, Division of Cardiology, University of California, San Francisco." } }, { "@type": "Person", "name": "Roddy Hiram", "url": "https://questionsmedicales.fr/author/Roddy%20Hiram", "affiliation": { "@type": "Organization", "name": "Department of Medicine and Research Center Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada." } }, { "@type": "Person", "name": "Jonathan M Kalman", "url": "https://questionsmedicales.fr/author/Jonathan%20M%20Kalman", "affiliation": { "@type": "Organization", "name": "Department of Cardiology, Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia." } }, { "@type": "Person", "name": "Prashanthan Sanders", "url": "https://questionsmedicales.fr/author/Prashanthan%20Sanders", "affiliation": { "@type": "Organization", "name": "Centre for Heart Rhythm Disorders, University of Adelaide, Adelaide, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia. Electronic address: prash.sanders@adelaide.edu.au." } }, { "@type": "Person", "name": "Fang Rao", "url": "https://questionsmedicales.fr/author/Fang%20Rao", "affiliation": { "@type": "Organization", "name": "Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Development of a novel drug information provision system for Kampo medicine using natural language processing technology.", "datePublished": "2023-07-13", "url": "https://questionsmedicales.fr/article/37442993", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1186/s12911-023-02230-3" } }, { "@type": "ScholarlyArticle", "name": "Natural Language Processing in a Clinical Decision Support System for the Identification of Venous Thromboembolism: Algorithm Development and Validation.", "datePublished": "2023-04-24", "url": "https://questionsmedicales.fr/article/37093636", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.2196/43153" } }, { "@type": "ScholarlyArticle", "name": "Adverse drug event detection using natural language processing: A scoping review of supervised learning methods.", "datePublished": "2023-01-03", "url": "https://questionsmedicales.fr/article/36595517", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1371/journal.pone.0279842" } }, { "@type": "ScholarlyArticle", "name": "Development and Validation of Machine Models Using Natural Language Processing to Classify Substances Involved in Overdose Deaths.", "datePublished": "2022-08-01", "url": "https://questionsmedicales.fr/article/35939303", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1001/jamanetworkopen.2022.25593" } }, { "@type": "ScholarlyArticle", "name": "Thematic analysis and natural language processing of job-related problems prior to physician suicide in 2003-2018.", "datePublished": "2022-06-29", "url": "https://questionsmedicales.fr/article/35766392", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1111/sltb.12896" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Phénomènes physiologiques respiratoires et circulatoires", "item": "https://questionsmedicales.fr/mesh/D002943" }, { "@type": "ListItem", "position": 3, "name": "Phénomènes physiologiques cardiovasculaires", "item": "https://questionsmedicales.fr/mesh/D002320" }, { "@type": "ListItem", "position": 4, "name": "Fonction auriculaire", "item": "https://questionsmedicales.fr/mesh/D016275" }, { "@type": "ListItem", "position": 5, "name": "Remodelage auriculaire", "item": "https://questionsmedicales.fr/mesh/D064752" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Remodelage auriculaire - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Remodelage auriculaire", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-16", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Remodelage auriculaire", "description": "Comment diagnostiquer le remodelage auriculaire ?\nQuels tests sont utilisés pour évaluer le remodelage ?\nQuels signes échographiques indiquent un remodelage ?\nLe Holter est-il utile pour le diagnostic ?\nQuels symptômes peuvent alerter sur un remodelage ?", "url": "https://questionsmedicales.fr/mesh/D064752?mesh_terms=Natural+Language+Processing&page=14#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Remodelage auriculaire", "description": "Quels sont les symptômes courants du remodelage auriculaire ?\nLe remodelage peut-il causer des douleurs thoraciques ?\nComment le remodelage affecte-t-il la fonction cardiaque ?\nLes symptômes varient-ils selon l'âge ?\nLe remodelage auriculaire peut-il être asymptomatique ?", "url": "https://questionsmedicales.fr/mesh/D064752?mesh_terms=Natural+Language+Processing&page=14#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Remodelage auriculaire", "description": "Comment prévenir le remodelage auriculaire ?\nL'exercice régulier aide-t-il à prévenir le remodelage ?\nUne alimentation équilibrée est-elle importante ?\nLe contrôle de la pression artérielle est-il crucial ?\nLe stress peut-il influencer le remodelage ?", "url": "https://questionsmedicales.fr/mesh/D064752?mesh_terms=Natural+Language+Processing&page=14#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Remodelage auriculaire", "description": "Quels traitements sont disponibles pour le remodelage ?\nLa cardioversion est-elle une option thérapeutique ?\nQuand envisager une ablation pour le remodelage ?\nLes changements de mode de vie sont-ils recommandés ?\nLes bêtabloquants sont-ils efficaces ?", "url": "https://questionsmedicales.fr/mesh/D064752?mesh_terms=Natural+Language+Processing&page=14#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Remodelage auriculaire", "description": "Quelles complications peuvent survenir avec le remodelage ?\nLe remodelage augmente-t-il le risque d'AVC ?\nComment le remodelage affecte-t-il la qualité de vie ?\nLe remodelage peut-il entraîner des hospitalisations ?\nY a-t-il un lien entre remodelage et mort subite ?", "url": "https://questionsmedicales.fr/mesh/D064752?mesh_terms=Natural+Language+Processing&page=14#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Remodelage auriculaire", "description": "Quels sont les principaux facteurs de risque ?\nL'âge est-il un facteur de risque ?\nLe tabagisme influence-t-il le remodelage ?\nLe stress chronique est-il un facteur de risque ?\nLes antécédents familiaux jouent-ils un rôle ?", "url": "https://questionsmedicales.fr/mesh/D064752?mesh_terms=Natural+Language+Processing&page=14#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment diagnostiquer le remodelage auriculaire ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Le diagnostic repose sur l'électrocardiogramme et l'échocardiographie." } }, { "@type": "Question", "name": "Quels tests sont utilisés pour évaluer le remodelage ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "Des tests comme l'IRM cardiaque et les biomarqueurs peuvent être utilisés." } }, { "@type": "Question", "name": "Quels signes échographiques indiquent un remodelage ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Une dilatation des oreillettes et des anomalies de la fonction diastolique sont des signes." } }, { "@type": "Question", "name": "Le Holter est-il utile pour le diagnostic ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le Holter permet de détecter des arythmies associées au remodelage auriculaire." } }, { "@type": "Question", "name": "Quels symptômes peuvent alerter sur un remodelage ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "Des palpitations, des essoufflements ou des douleurs thoraciques peuvent alerter." } }, { "@type": "Question", "name": "Quels sont les symptômes courants du remodelage auriculaire ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "Les symptômes incluent palpitations, fatigue, et essoufflement à l'effort." } }, { "@type": "Question", "name": "Le remodelage peut-il causer des douleurs thoraciques ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des douleurs thoraciques peuvent survenir en raison d'une mauvaise perfusion." } }, { "@type": "Question", "name": "Comment le remodelage affecte-t-il la fonction cardiaque ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "Il peut entraîner une diminution de la fonction systolique et diastolique." } }, { "@type": "Question", "name": "Les symptômes varient-ils selon l'âge ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les symptômes peuvent être plus prononcés chez les personnes âgées." } }, { "@type": "Question", "name": "Le remodelage auriculaire peut-il être asymptomatique ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Oui, certains patients peuvent ne présenter aucun symptôme visible." } }, { "@type": "Question", "name": "Comment prévenir le remodelage auriculaire ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "La gestion des facteurs de risque cardiovasculaires est essentielle pour la prévention." } }, { "@type": "Question", "name": "L'exercice régulier aide-t-il à prévenir le remodelage ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "Oui, l'exercice régulier peut améliorer la santé cardiaque et réduire les risques." } }, { "@type": "Question", "name": "Une alimentation équilibrée est-elle importante ?", "position": 13, "acceptedAnswer": { "@type": "Answer", "text": "Oui, une alimentation riche en fruits, légumes et oméga-3 est bénéfique." } }, { "@type": "Question", "name": "Le contrôle de la pression artérielle est-il crucial ?", "position": 14, "acceptedAnswer": { "@type": "Answer", "text": "Oui, maintenir une pression artérielle normale est vital pour prévenir le remodelage." } }, { "@type": "Question", "name": "Le stress peut-il influencer le remodelage ?", "position": 15, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le stress chronique peut aggraver les problèmes cardiaques et le remodelage." } }, { "@type": "Question", "name": "Quels traitements sont disponibles pour le remodelage ?", "position": 16, "acceptedAnswer": { "@type": "Answer", "text": "Les traitements incluent des médicaments antiarythmiques et des anticoagulants." } }, { "@type": "Question", "name": "La cardioversion est-elle une option thérapeutique ?", "position": 17, "acceptedAnswer": { "@type": "Answer", "text": "Oui, la cardioversion peut être utilisée pour restaurer un rythme normal." } }, { "@type": "Question", "name": "Quand envisager une ablation pour le remodelage ?", "position": 18, "acceptedAnswer": { "@type": "Answer", "text": "L'ablation est envisagée si les traitements médicamenteux échouent." } }, { "@type": "Question", "name": "Les changements de mode de vie sont-ils recommandés ?", "position": 19, "acceptedAnswer": { "@type": "Answer", "text": "Oui, une alimentation saine et l'exercice régulier sont conseillés." } }, { "@type": "Question", "name": "Les bêtabloquants sont-ils efficaces ?", "position": 20, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les bêtabloquants aident à contrôler la fréquence cardiaque et les symptômes." } }, { "@type": "Question", "name": "Quelles complications peuvent survenir avec le remodelage ?", "position": 21, "acceptedAnswer": { "@type": "Answer", "text": "Les complications incluent la fibrillation auriculaire et l'insuffisance cardiaque." } }, { "@type": "Question", "name": "Le remodelage augmente-t-il le risque d'AVC ?", "position": 22, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le remodelage auriculaire augmente le risque d'accidents vasculaires cérébraux." } }, { "@type": "Question", "name": "Comment le remodelage affecte-t-il la qualité de vie ?", "position": 23, "acceptedAnswer": { "@type": "Answer", "text": "Il peut réduire la qualité de vie en provoquant fatigue et limitations physiques." } }, { "@type": "Question", "name": "Le remodelage peut-il entraîner des hospitalisations ?", "position": 24, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les complications liées au remodelage peuvent nécessiter des hospitalisations fréquentes." } }, { "@type": "Question", "name": "Y a-t-il un lien entre remodelage et mort subite ?", "position": 25, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le remodelage auriculaire peut augmenter le risque de mort subite cardiaque." } }, { "@type": "Question", "name": "Quels sont les principaux facteurs de risque ?", "position": 26, "acceptedAnswer": { "@type": "Answer", "text": "Les facteurs incluent l'hypertension, le diabète, et l'obésité." } }, { "@type": "Question", "name": "L'âge est-il un facteur de risque ?", "position": 27, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le risque de remodelage auriculaire augmente avec l'âge." } }, { "@type": "Question", "name": "Le tabagisme influence-t-il le remodelage ?", "position": 28, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le tabagisme est un facteur de risque majeur pour les maladies cardiaques." } }, { "@type": "Question", "name": "Le stress chronique est-il un facteur de risque ?", "position": 29, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le stress chronique peut contribuer au développement de problèmes cardiaques." } }, { "@type": "Question", "name": "Les antécédents familiaux jouent-ils un rôle ?", "position": 30, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des antécédents familiaux de maladies cardiaques augmentent le risque." } } ] } ] }

Sources (10000 au total)

Development of a novel drug information provision system for Kampo medicine using natural language processing technology.

Kampo medicine is widely used in Japan; however, most physicians and pharmacists have insufficient knowledge and experience in it. Although a chatbot-style system using machine learning and natural la... The target Kampo formulas were 33 formulas listed in the 17th revision of the Japanese Pharmacopoeia. The information included in the system comes from the package inserts of Kampo medicines, Manuals ... The precision, recall, and F-measure of the system performance were 0.986, 0.915, and 0.949, respectively. The results were stable even with differences in the amount of expertise of the question auth... We developed a system using natural language classification that can give appropriate answers to most of the validation questions....

Natural Language Processing in a Clinical Decision Support System for the Identification of Venous Thromboembolism: Algorithm Development and Validation.

It remains unknown whether capturing data from electronic health records (EHRs) using natural language processing (NLP) can improve venous thromboembolism (VTE) detection in different clinical setting... The aim of this study was to validate the NLP algorithm in a clinical decision support system for VTE risk assessment and integrated care (DeVTEcare) to identify VTEs from EHRs.... All inpatients aged ≥18 years in the Sixth Medical Center of the Chinese People's Liberation Army General Hospital from January 1 to December 31, 2021, were included as the validation cohort. The sens... Among 30,152 patients (median age 56 [IQR 41-67] years; 14,247/30,152, 47.3% females), the prevalence of VTE, PE, and DVT was 2.1% (626/30,152), 0.6% (177/30,152), and 1.8% (532/30,152), respectively.... The NLP algorithm in our DeVTEcare identified VTE well across different clinical settings, especially in patients in surgery units, departments with low-risk VTE, and patients aged ≤65 years. This alg...

Adverse drug event detection using natural language processing: A scoping review of supervised learning methods.

To reduce adverse drug events (ADEs), hospitals need a system to support them in monitoring ADE occurrence routinely, rapidly, and at scale. Natural language processing (NLP), a computerized approach ...

Development and Validation of Machine Models Using Natural Language Processing to Classify Substances Involved in Overdose Deaths.

Overdose is one of the leading causes of death in the US; however, surveillance data lag considerably from medical examiner determination of the death to reporting in national surveillance reports.... To automate the classification of deaths related to substances in medical examiner data using natural language processing (NLP) and machine learning (ML).... Diagnostic study comparing different natural language processing and machine learning algorithms to identify substances related to overdose in 10 health jurisdictions in the US from January 1, 2020, t... Text from each case was manually classified to a substance that was related to the death. Three feature representation methods were used and compared: text frequency-inverse document frequency (TF-IDF... Text data from death certificates were classified as any opioid, fentanyl, alcohol, cocaine, methamphetamine, heroin, prescription opioid, and an aggregate of other substances. Diagnostic metrics and ... Of 35 433 death records analyzed (decedent median age, 58 years [IQR, 41-72 years]; 24 449 [69%] were male), the most common substances related to deaths included any opioid (5739 [16%]), fentanyl (47... In this diagnostic study, NLP/ML algorithms demonstrated excellent diagnostic performance at classifying substances related to overdoses. These algorithms should be integrated into workflows to decrea...

Thematic analysis and natural language processing of job-related problems prior to physician suicide in 2003-2018.

Although previous studies have consistently demonstrated that physicians are more likely than non-physicians to experience work-related stressors prior to suicide, the specific nature of these stresso... The study utilized a mixed methods approach combining thematic analysis and natural language processing to develop themes representing death investigation narratives of 200 physician suicides with imp... Through thematic analysis, six overarching themes were identified: incapacity to work due to deterioration of physical health, substance use jeopardizing employment, interaction between mental health ... This is the first known study that integrated thematic analysis and natural language processing to characterize work-related stressors preceding physician suicide. The findings highlight the importanc...

Using Natural Language Processing and Machine Learning to Identify Internal Medicine-Pediatrics Residency Values in Applications.

Although holistic review has been used successfully in some residency programs to decrease bias, such review is time-consuming and unsustainable for many programs without initial prescreening. The uns... Using residency applications to the University of Utah internal medicine-pediatrics program from 2015 to 2019, the authors extracted relevant snippets of text from the narrative sections of applicatio... Overall, the MLM had a sensitivity of 0.64, specificity of 0.97, positive predictive value of 0.62, negative predictive value of 0.97, and F1 score of 0.63. The mean (SD) total number of annotations p... The authors created an MLM that can identify several values important for resident success in internal medicine-pediatrics programs with moderate sensitivity and high specificity. The authors will con...

The reporting of neuropsychiatric symptoms in electronic health records of individuals with Alzheimer's disease: a natural language processing study.

Neuropsychiatric symptoms (NPS) are prevalent in the early clinical stages of Alzheimer's disease (AD) according to proxy-based instruments. Little is known about which NPS clinicians report and wheth... Two academic memory clinic cohorts were used: the Amsterdam UMC (n = 3001) and the Erasmus MC (n = 646). Patients included in these cohorts had MCI, AD dementia, or mixed AD/VaD dementia. Ten trained ... Internal validation performance of the classifiers was excellent (AUC range: 0.81-0.91), but external validation performance decreased (AUC range: 0.51-0.93). NPS were prevalent in EHRs from the Amste... NLP classifiers performed well in detecting a wide range of NPS in EHRs of patients with symptomatic AD visiting the memory clinic and showed that clinicians frequently reported NPS in these EHRs. Cli...

Examining Implicit Bias Differences in Pediatric Surgical Fellowship Letters of Recommendation Using Natural Language Processing.

We analyzed the prevalence and type of bias in letters of recommendation (LOR) for pediatric surgical fellowship applications from 2016-2021 using natural language processing (NLP) at a quaternary car... Demographics were extracted from submitted applications. The Valence Aware Dictionary for sEntiment Reasoning (VADER) model was used to calculate polarity scores. The National Research Council dataset... Applicants to a single pediatric surgery fellowship were selected for this study from 2016 to 2021. A total of 182 individual applicants were included and 701 letters of recommendation were analyzed.... Black applicants had the highest mean polarity (most positive), while Hispanic applicants had the lowest. Overall differences between polarity distributions were not statistically significant. The int... This study identified differences in LORs based on racial and gender demographics submitted as part of pediatric surgical fellowship applications to a single training program. The presence of bias in ... From this work, it can be concluded that bias in LORs, as reflected as differences in polarity, which is likely a result of the intensity of the emotions being used and not the types of emotions being...

Development of a natural language processing algorithm to extract seizure types and frequencies from the electronic health record.

To develop a natural language processing (NLP) algorithm to abstract seizure types and frequencies from electronic health records (EHR).... Seizure frequency measurement is an epilepsy quality metric. Yet, abstraction of seizure frequency from the EHR is laborious. We present an NLP algorithm to extract seizure data from unstructured text... We developed a rules-based NLP algorithm to recognize terms related to seizures and frequency within the text of an outpatient encounter. Algorithm output (e.g. number of seizures of a particular type... In the internal test set, the algorithm demonstrated 70% recall (173/248), 95% precision (173/182), and 0.82 F1 score compared to manual review. Algorithm performance in the external test set was lowe... These results suggest NLP extraction of seizure types and frequencies is feasible, though not without challenges in generalizability for large-scale implementation....