Études observationnelles comme sujet : Questions médicales fréquentes
Nom anglais: Observational Studies as Topic
Descriptor UI:D064887
Tree Number:N06.850.520.450.250.500
Termes MeSH sélectionnés :
Data Science
{
"@context": "https://schema.org",
"@graph": [
{
"@type": "MedicalWebPage",
"name": "Études observationnelles comme sujet : Questions médicales les plus fréquentes",
"headline": "Études observationnelles comme sujet : Comprendre les symptômes, diagnostics et traitements",
"description": "Guide complet et accessible sur les Études observationnelles comme sujet : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.",
"datePublished": "2024-06-21",
"dateModified": "2025-03-18",
"inLanguage": "fr",
"medicalAudience": [
{
"@type": "MedicalAudience",
"name": "Grand public",
"audienceType": "Patient",
"healthCondition": {
"@type": "MedicalCondition",
"name": "Études observationnelles comme sujet"
},
"suggestedMinAge": 18,
"suggestedGender": "unisex"
},
{
"@type": "MedicalAudience",
"name": "Médecins",
"audienceType": "Physician",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "France"
}
},
{
"@type": "MedicalAudience",
"name": "Chercheurs",
"audienceType": "Researcher",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "International"
}
}
],
"reviewedBy": {
"@type": "Person",
"name": "Dr Olivier Menir",
"jobTitle": "Expert en Médecine",
"description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale",
"url": "/static/pages/docteur-olivier-menir.html",
"alumniOf": {
"@type": "EducationalOrganization",
"name": "Université Paris Descartes"
}
},
"isPartOf": {
"@type": "MedicalWebPage",
"name": "Études cliniques comme sujet",
"url": "https://questionsmedicales.fr/mesh/D000068456",
"about": {
"@type": "MedicalCondition",
"name": "Études cliniques comme sujet",
"code": {
"@type": "MedicalCode",
"code": "D000068456",
"codingSystem": "MeSH"
},
"identifier": {
"@type": "PropertyValue",
"propertyID": "MeSH Tree",
"value": "N06.850.520.450.250"
}
}
},
"about": {
"@type": "MedicalCondition",
"name": "Études observationnelles comme sujet",
"alternateName": "Observational Studies as Topic",
"code": {
"@type": "MedicalCode",
"code": "D064887",
"codingSystem": "MeSH"
}
},
"author": [
{
"@type": "Person",
"name": "Ritamaria Di Lorenzo",
"url": "https://questionsmedicales.fr/author/Ritamaria%20Di%20Lorenzo",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Sonia Laneri",
"url": "https://questionsmedicales.fr/author/Sonia%20Laneri",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Giovanni Greco",
"url": "https://questionsmedicales.fr/author/Giovanni%20Greco",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Raj Kumar Thapa",
"url": "https://questionsmedicales.fr/author/Raj%20Kumar%20Thapa",
"affiliation": {
"@type": "Organization",
"name": "Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO-0316 Oslo, Norway. Electronic address: r.k.thapa@farmasi.uio.no."
}
},
{
"@type": "Person",
"name": "Hanne Cecilie Winther-Larsen",
"url": "https://questionsmedicales.fr/author/Hanne%20Cecilie%20Winther-Larsen",
"affiliation": {
"@type": "Organization",
"name": "Centre for Integrative Microbial Evolution (CIME) and Department of Pharmacology and Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, NO-0371 Oslo, Norway."
}
}
],
"citation": [
{
"@type": "ScholarlyArticle",
"name": "Data protection-compliant broad consent for secondary use of health care data and human biosamples for (bio)medical research: Towards a new German national standard.",
"datePublished": "2022-05-25",
"url": "https://questionsmedicales.fr/article/35643273",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1016/j.jbi.2022.104096"
}
},
{
"@type": "ScholarlyArticle",
"name": "Differences in imeglimin response in subgroups of patients with type 2 diabetes stratified by data-driven cluster analysis: A post-hoc analysis of imeglimin clinical trial data.",
"datePublished": "2024-06-25",
"url": "https://questionsmedicales.fr/article/38924336",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1111/dom.15716"
}
},
{
"@type": "ScholarlyArticle",
"name": "Impact of inconsistent ethnicity recordings on estimates of inequality in child health and education data: a data linkage study of Child and Adolescent Mental Health Services in South London.",
"datePublished": "2024-03-05",
"url": "https://questionsmedicales.fr/article/38443076",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1136/bmjopen-2023-078788"
}
},
{
"@type": "ScholarlyArticle",
"name": "Traceable Research Data Sharing in a German Medical Data Integration Center With FAIR (Findability, Accessibility, Interoperability, and Reusability)-Geared Provenance Implementation: Proof-of-Concept Study.",
"datePublished": "2023-12-07",
"url": "https://questionsmedicales.fr/article/38060305",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.2196/50027"
}
},
{
"@type": "ScholarlyArticle",
"name": "The Usefulness of Present-on-Admission Data as an Indicator of Healthcare Quality Evaluation Using the Korean National Hospital Discharge in-Depth Injury Survey Data from 2006 to 2019.",
"datePublished": "2023-11-06",
"url": "https://questionsmedicales.fr/article/37953808",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.2147/RMHP.S423555"
}
}
],
"breadcrumb": {
"@type": "BreadcrumbList",
"itemListElement": [
{
"@type": "ListItem",
"position": 1,
"name": "questionsmedicales.fr",
"item": "https://questionsmedicales.fr"
},
{
"@type": "ListItem",
"position": 2,
"name": "Environnement et santé publique",
"item": "https://questionsmedicales.fr/mesh/D004778"
},
{
"@type": "ListItem",
"position": 3,
"name": "Santé publique",
"item": "https://questionsmedicales.fr/mesh/D011634"
},
{
"@type": "ListItem",
"position": 4,
"name": "Méthodes épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D004812"
},
{
"@type": "ListItem",
"position": 5,
"name": "Caractéristiques des études épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D016020"
},
{
"@type": "ListItem",
"position": 6,
"name": "Études cliniques comme sujet",
"item": "https://questionsmedicales.fr/mesh/D000068456"
},
{
"@type": "ListItem",
"position": 7,
"name": "Études observationnelles comme sujet",
"item": "https://questionsmedicales.fr/mesh/D064887"
}
]
}
},
{
"@type": "MedicalWebPage",
"name": "Article complet : Études observationnelles comme sujet - Questions et réponses",
"headline": "Questions et réponses médicales fréquentes sur Études observationnelles comme sujet",
"description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.",
"datePublished": "2025-05-14",
"inLanguage": "fr",
"hasPart": [
{
"@type": "MedicalWebPage",
"name": "Diagnostic",
"headline": "Diagnostic sur Études observationnelles comme sujet",
"description": "Comment les études observationnelles aident-elles au diagnostic ?\nQuels types de diagnostics sont souvent étudiés ?\nLes études observationnelles peuvent-elles remplacer des tests diagnostiques ?\nQuel est le rôle des biais dans le diagnostic ?\nComment les études observationnelles évaluent-elles la précision des diagnostics ?",
"url": "https://questionsmedicales.fr/mesh/D064887?mesh_terms=Data+Science&page=1000#section-diagnostic"
},
{
"@type": "MedicalWebPage",
"name": "Symptômes",
"headline": "Symptômes sur Études observationnelles comme sujet",
"description": "Quels symptômes sont souvent observés dans les études ?\nComment les symptômes sont-ils mesurés dans ces études ?\nLes études observationnelles identifient-elles des symptômes nouveaux ?\nQuel est l'impact des symptômes sur la qualité de vie ?\nLes symptômes sont-ils toujours fiables dans les études ?",
"url": "https://questionsmedicales.fr/mesh/D064887?mesh_terms=Data+Science&page=1000#section-symptômes"
},
{
"@type": "MedicalWebPage",
"name": "Prévention",
"headline": "Prévention sur Études observationnelles comme sujet",
"description": "Les études observationnelles aident-elles à identifier des stratégies de prévention ?\nQuels comportements sont souvent étudiés pour la prévention ?\nComment les résultats influencent-ils les politiques de santé ?\nLes études observationnelles mesurent-elles l'impact des programmes de prévention ?\nQuels sont les défis dans l'étude de la prévention ?",
"url": "https://questionsmedicales.fr/mesh/D064887?mesh_terms=Data+Science&page=1000#section-prévention"
},
{
"@type": "MedicalWebPage",
"name": "Traitements",
"headline": "Traitements sur Études observationnelles comme sujet",
"description": "Comment les études observationnelles évaluent-elles les traitements ?\nLes études observationnelles comparent-elles différents traitements ?\nQuels traitements sont souvent étudiés ?\nLes effets secondaires sont-ils documentés dans ces études ?\nComment les résultats des traitements sont-ils interprétés ?",
"url": "https://questionsmedicales.fr/mesh/D064887?mesh_terms=Data+Science&page=1000#section-traitements"
},
{
"@type": "MedicalWebPage",
"name": "Complications",
"headline": "Complications sur Études observationnelles comme sujet",
"description": "Les études observationnelles identifient-elles des complications ?\nComment les complications sont-elles mesurées ?\nLes complications sont-elles toujours prévisibles ?\nQuel est l'impact des complications sur le traitement ?\nLes études observationnelles aident-elles à comprendre les complications ?",
"url": "https://questionsmedicales.fr/mesh/D064887?mesh_terms=Data+Science&page=1000#section-complications"
},
{
"@type": "MedicalWebPage",
"name": "Facteurs de risque",
"headline": "Facteurs de risque sur Études observationnelles comme sujet",
"description": "Quels facteurs de risque sont souvent étudiés ?\nComment les études observationnelles identifient-elles les facteurs de risque ?\nLes facteurs de risque sont-ils modifiables ?\nQuel est l'impact des facteurs de risque sur la santé ?\nLes études observationnelles peuvent-elles établir des liens de causalité ?",
"url": "https://questionsmedicales.fr/mesh/D064887?mesh_terms=Data+Science&page=1000#section-facteurs de risque"
}
]
},
{
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "Comment les études observationnelles aident-elles au diagnostic ?",
"position": 1,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles identifient des facteurs associés à des maladies, améliorant ainsi le diagnostic précoce."
}
},
{
"@type": "Question",
"name": "Quels types de diagnostics sont souvent étudiés ?",
"position": 2,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les maladies chroniques, les infections et les troubles mentaux sont fréquemment analysés."
}
},
{
"@type": "Question",
"name": "Les études observationnelles peuvent-elles remplacer des tests diagnostiques ?",
"position": 3,
"acceptedAnswer": {
"@type": "Answer",
"text": "Non, elles complètent les tests mais ne les remplacent pas, car elles ne prouvent pas de causalité."
}
},
{
"@type": "Question",
"name": "Quel est le rôle des biais dans le diagnostic ?",
"position": 4,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les biais peuvent fausser les résultats, rendant le diagnostic moins fiable dans certaines études."
}
},
{
"@type": "Question",
"name": "Comment les études observationnelles évaluent-elles la précision des diagnostics ?",
"position": 5,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles comparent les diagnostics cliniques avec des résultats de référence pour mesurer la précision."
}
},
{
"@type": "Question",
"name": "Quels symptômes sont souvent observés dans les études ?",
"position": 6,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les symptômes varient selon les maladies, incluant douleur, fatigue et troubles cognitifs."
}
},
{
"@type": "Question",
"name": "Comment les symptômes sont-ils mesurés dans ces études ?",
"position": 7,
"acceptedAnswer": {
"@type": "Answer",
"text": "Ils sont souvent évalués par des questionnaires standardisés ou des échelles de mesure."
}
},
{
"@type": "Question",
"name": "Les études observationnelles identifient-elles des symptômes nouveaux ?",
"position": 8,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elles peuvent révéler des symptômes non documentés ou mal compris dans certaines conditions."
}
},
{
"@type": "Question",
"name": "Quel est l'impact des symptômes sur la qualité de vie ?",
"position": 9,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les symptômes peuvent significativement affecter la qualité de vie, limitant les activités quotidiennes."
}
},
{
"@type": "Question",
"name": "Les symptômes sont-ils toujours fiables dans les études ?",
"position": 10,
"acceptedAnswer": {
"@type": "Answer",
"text": "Non, leur fiabilité peut être influencée par des biais de déclaration ou des facteurs contextuels."
}
},
{
"@type": "Question",
"name": "Les études observationnelles aident-elles à identifier des stratégies de prévention ?",
"position": 11,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elles identifient des facteurs de risque et des comportements protecteurs pour la santé."
}
},
{
"@type": "Question",
"name": "Quels comportements sont souvent étudiés pour la prévention ?",
"position": 12,
"acceptedAnswer": {
"@type": "Answer",
"text": "L'alimentation, l'exercice physique et le tabagisme sont fréquemment analysés."
}
},
{
"@type": "Question",
"name": "Comment les résultats influencent-ils les politiques de santé ?",
"position": 13,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les résultats peuvent guider les politiques de santé publique en matière de prévention des maladies."
}
},
{
"@type": "Question",
"name": "Les études observationnelles mesurent-elles l'impact des programmes de prévention ?",
"position": 14,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elles évaluent l'efficacité des programmes de prévention dans des populations spécifiques."
}
},
{
"@type": "Question",
"name": "Quels sont les défis dans l'étude de la prévention ?",
"position": 15,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les défis incluent le suivi à long terme et la variabilité des comportements individuels."
}
},
{
"@type": "Question",
"name": "Comment les études observationnelles évaluent-elles les traitements ?",
"position": 16,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles analysent les résultats des traitements dans des populations réelles sans randomisation."
}
},
{
"@type": "Question",
"name": "Les études observationnelles comparent-elles différents traitements ?",
"position": 17,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elles peuvent comparer l'efficacité de plusieurs traitements dans des conditions réelles."
}
},
{
"@type": "Question",
"name": "Quels traitements sont souvent étudiés ?",
"position": 18,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les traitements médicamenteux, les interventions chirurgicales et les thérapies comportementales."
}
},
{
"@type": "Question",
"name": "Les effets secondaires sont-ils documentés dans ces études ?",
"position": 19,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, les études observationnelles rapportent souvent des effets secondaires observés chez les patients."
}
},
{
"@type": "Question",
"name": "Comment les résultats des traitements sont-ils interprétés ?",
"position": 20,
"acceptedAnswer": {
"@type": "Answer",
"text": "Ils sont interprétés en tenant compte des biais potentiels et des facteurs de confusion."
}
},
{
"@type": "Question",
"name": "Les études observationnelles identifient-elles des complications ?",
"position": 21,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elles documentent les complications associées à des maladies ou traitements spécifiques."
}
},
{
"@type": "Question",
"name": "Comment les complications sont-elles mesurées ?",
"position": 22,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles sont mesurées par des événements indésirables rapportés ou des critères cliniques définis."
}
},
{
"@type": "Question",
"name": "Les complications sont-elles toujours prévisibles ?",
"position": 23,
"acceptedAnswer": {
"@type": "Answer",
"text": "Non, certaines complications peuvent survenir de manière inattendue, rendant leur prévision difficile."
}
},
{
"@type": "Question",
"name": "Quel est l'impact des complications sur le traitement ?",
"position": 24,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les complications peuvent nécessiter des ajustements de traitement ou des interventions supplémentaires."
}
},
{
"@type": "Question",
"name": "Les études observationnelles aident-elles à comprendre les complications ?",
"position": 25,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elles fournissent des données sur la fréquence et les facteurs associés aux complications."
}
},
{
"@type": "Question",
"name": "Quels facteurs de risque sont souvent étudiés ?",
"position": 26,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les facteurs de risque incluent l'âge, le sexe, le mode de vie et les antécédents médicaux."
}
},
{
"@type": "Question",
"name": "Comment les études observationnelles identifient-elles les facteurs de risque ?",
"position": 27,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles analysent les données de santé et les comportements des populations sur de longues périodes."
}
},
{
"@type": "Question",
"name": "Les facteurs de risque sont-ils modifiables ?",
"position": 28,
"acceptedAnswer": {
"@type": "Answer",
"text": "Certains sont modifiables, comme le tabagisme et l'alimentation, tandis que d'autres ne le sont pas."
}
},
{
"@type": "Question",
"name": "Quel est l'impact des facteurs de risque sur la santé ?",
"position": 29,
"acceptedAnswer": {
"@type": "Answer",
"text": "Ils augmentent la probabilité de développer des maladies, influençant la santé publique."
}
},
{
"@type": "Question",
"name": "Les études observationnelles peuvent-elles établir des liens de causalité ?",
"position": 30,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles peuvent suggérer des associations, mais ne peuvent pas prouver la causalité directement."
}
}
]
}
]
}
The secondary use of deidentified but not anonymized patient data is a promising approach for enabling precision medicine and learning health care systems. In most national jurisdictions (e.g., in Eur...
A working group of the national Medical Informatics Initiative in Germany conducted a requirements analysis and developed a GDPR-compliant broad consent standard. The development included consensus pr...
This paper presents the broad consent text together with a guidance document on mandatory safeguards for broad consent implementation. The mandatory safeguards comprise i) independent review of indivi...
Both the resulting broad consent text and the national consensus process are relevant for similar activities internationally. A key challenge of aligning consent documents with the various stakeholder...
To explore differences in imeglimin response among type 2 diabetes (T2D) patient clusters using data-driven cluster analysis....
Data-driven cluster analysis (non-hierarchical k-means clustering) was performed on randomized, double-blind, imeglimin monotherapy and adjunctive (to insulin) therapy trials based on four baseline va...
Four clusters were identified with distinct clinical characteristics in both monotherapy (1-4) and adjunctive therapy (I-IV) trials; clusters 1 and I had lower values across all four indices versus th...
Differences in imeglimin response were observed among T2D patient clusters. Patient stratification may help with selection of those most probable to respond to imeglimin....
Ethnicity data are critical for identifying inequalities, but previous studies suggest that ethnicity is not consistently recorded between different administrative datasets. With researchers increasin...
Cohort study....
South London and Maudsley NHS Foundation Trust deidentified electronic health records, accessed via Clinical Record Interactive Search (CRIS) and the National Pupil Database (NPD) (2007-2013)....
N=30 426 children and adolescents referred to local Child and Adolescent Mental Health Services....
Ethnicity data were compared between CRIS and the NPD. Associations between ethnicity as recorded from each source and key educational and clinical outcomes were explored with risk ratios....
Ethnicity data were available for 79.3% from the NPD, 87.0% from CRIS, 97.3% from either source and 69.0% from both sources. Among those who had ethnicity data from both, the two data sources agreed o...
Data linkage has the potential to minimise missing ethnicity data, and overlap in ethnicity categorisations between CRIS and the NPD was generally high. However, choosing which data source to primaril...
Secondary investigations into digital health records, including electronic patient data from German medical data integration centers (DICs), pave the way for enhanced future patient care. However, onl...
The primary goal of this study is to augment the reusability of clinical routine data within a medical DIC for secondary utilization in clinical research. Our aim is to establish provenance traces tha...
We adhered to a customized road map for a provenance framework, and examined the data integration steps across the ETL (extract, transform, and load) phases. Following a maturity model, we derived req...
This study marks the inaugural implementation of integrated provenance traces at the data element level within a German medical DIC. We devised and executed a practical method that synergizes the robu...
The research method outlined for the proof-of-concept provenance class has been crafted to promote effective and reliable core data management practices. It aims to enhance biomedical data by imbuing ...
Comorbidities of a principal diagnosis have varying impacts on disease and require different management depending on the onset timing. This study investigated the usefulness of present-on-admission (P...
We analyzed patient discharge data for 14 years from 2006 to 2019 using Korean National Hospital Discharge In-Depth Injury Survey (KNHDIS)....
Out of 3,231,731 discharged patients, 19,871 had secondary diagnosis codes for decubitus ulcers (n=10,390, 52.3%), delirium (n=6103, 30.7%), or hypokalemia (n=3378, 17.0%). Analysis of patients with s...
All three of these diseases commonly occur postoperatively or during treatment and thus should be designated as potentially preventable complications that require special attention, and should also be...
The dynamic change in land use/land cover (LULC) caused by rapid urbanization has become a major concern in Lahore, causing a variety of socioeconomic and environmental issues relating to air quality....
The applicability of randomised controlled trials of pharmacological agents to older people with frailty/multimorbidity is often uncertain, due to concerns that trials are not representative. However,...
This was an observational analysis of individual (125 trials, n=122,069) and aggregate-level drug trial data (483 trials, n=636,267) for 21 index conditions compared to population-based routine health...
For 12/21 index conditions, the pooled observed/expected SAE ratio was <1, indicating fewer SAEs in trial participants than in routine care. A further 6/21 had point estimates <1 but the 95% CI includ...
Trial participants experience fewer SAEs than expected based on age/sex/condition hospitalisation and death rates in routine care, confirming the predicted lack of representativeness. This difference ...
Saccharomyces cerevisiae undergoes robust oscillations to regulate its physiology for adaptation and survival under nutrient-limited conditions. Environmental cues can induce rhythmic metabolic altera...
This study aimed to compare and evaluate the efficiency and accuracy of computerized adaptive testing (CAT) under two stopping rules (SEM 0.3 and 0.25) using both real and simulated data in medical ex...
This study employed post-hoc simulation and real data analysis to explore the optimal stopping rule for CAT in medical examinations. The real data were obtained from the responses of 3rd-year medical ...
Both SEM 0.25 and SEM 0.30 provided a good balance between accuracy and efficiency in CAT. The real data showed minimal differences in pass/fail outcomes between the 2 SEM conditions, with a high corr...
The findings suggest that both SEM 0.25 and 0.30 are effective termination criteria in the context of the Rasch model, balancing accuracy and efficiency in CAT....
The objective of this study is to describe application of the Observational Medical Outcomes Partnership (OMOP) common data model (CDM) to support medical device real-world evaluation in a National Ev...