Analyse de série chronologique interrompue : Questions médicales fréquentes
Nom anglais: Interrupted Time Series Analysis
Descriptor UI:D065186
Tree Number:N06.850.520.450.500.912
Termes MeSH sélectionnés :
Unsupervised Machine Learning
{
"@context": "https://schema.org",
"@graph": [
{
"@type": "MedicalWebPage",
"name": "Analyse de série chronologique interrompue : Questions médicales les plus fréquentes",
"headline": "Analyse de série chronologique interrompue : Comprendre les symptômes, diagnostics et traitements",
"description": "Guide complet et accessible sur les Analyse de série chronologique interrompue : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.",
"datePublished": "2024-02-04",
"dateModified": "2025-04-29",
"inLanguage": "fr",
"medicalAudience": [
{
"@type": "MedicalAudience",
"name": "Grand public",
"audienceType": "Patient",
"healthCondition": {
"@type": "MedicalCondition",
"name": "Analyse de série chronologique interrompue"
},
"suggestedMinAge": 18,
"suggestedGender": "unisex"
},
{
"@type": "MedicalAudience",
"name": "Médecins",
"audienceType": "Physician",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "France"
}
},
{
"@type": "MedicalAudience",
"name": "Chercheurs",
"audienceType": "Researcher",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "International"
}
}
],
"reviewedBy": {
"@type": "Person",
"name": "Dr Olivier Menir",
"jobTitle": "Expert en Médecine",
"description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale",
"url": "/static/pages/docteur-olivier-menir.html",
"alumniOf": {
"@type": "EducationalOrganization",
"name": "Université Paris Descartes"
}
},
"isPartOf": {
"@type": "MedicalWebPage",
"name": "Études épidémiologiques",
"url": "https://questionsmedicales.fr/mesh/D016021",
"about": {
"@type": "MedicalCondition",
"name": "Études épidémiologiques",
"code": {
"@type": "MedicalCode",
"code": "D016021",
"codingSystem": "MeSH"
},
"identifier": {
"@type": "PropertyValue",
"propertyID": "MeSH Tree",
"value": "N06.850.520.450.500"
}
}
},
"about": {
"@type": "MedicalCondition",
"name": "Analyse de série chronologique interrompue",
"alternateName": "Interrupted Time Series Analysis",
"code": {
"@type": "MedicalCode",
"code": "D065186",
"codingSystem": "MeSH"
}
},
"author": [
{
"@type": "Person",
"name": "Jürgen Rehm",
"url": "https://questionsmedicales.fr/author/J%C3%BCrgen%20Rehm",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Shannon Lange",
"url": "https://questionsmedicales.fr/author/Shannon%20Lange",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Y Li",
"url": "https://questionsmedicales.fr/author/Y%20Li",
"affiliation": {
"@type": "Organization",
"name": "Key Laboratory of Medical Virology and Viral Diseases of National Health Commission, National Institute of Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China."
}
},
{
"@type": "Person",
"name": "S C Yu",
"url": "https://questionsmedicales.fr/author/S%20C%20Yu",
"affiliation": {
"@type": "Organization",
"name": "Office of Epidemiology, Chinese Center for Disease Control and Prevention, Beijing 102206, China."
}
},
{
"@type": "Person",
"name": "C G Jin",
"url": "https://questionsmedicales.fr/author/C%20G%20Jin",
"affiliation": {
"@type": "Organization",
"name": "School of Social Development and Public Policy, Beijing Normal University, Beijing 100875, China."
}
}
],
"citation": [
{
"@type": "ScholarlyArticle",
"name": "Profiling Physical Fitness of Physical Education Majors Using Unsupervised Machine Learning.",
"datePublished": "2022-12-22",
"url": "https://questionsmedicales.fr/article/36612474",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.3390/ijerph20010146"
}
},
{
"@type": "ScholarlyArticle",
"name": "Communicating exploratory unsupervised machine learning analysis in age clustering for paediatric disease.",
"datePublished": "2024-07-29",
"url": "https://questionsmedicales.fr/article/39074912",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1136/bmjhci-2023-100963"
}
},
{
"@type": "ScholarlyArticle",
"name": "Cell deformability heterogeneity recognition by unsupervised machine learning from in-flow motion parameters.",
"datePublished": "2022-12-06",
"url": "https://questionsmedicales.fr/article/36398860",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1039/d2lc00902a"
}
},
{
"@type": "ScholarlyArticle",
"name": "Clustering using unsupervised machine learning to stratify the risk of immune-related liver injury.",
"datePublished": "2022-11-08",
"url": "https://questionsmedicales.fr/article/36302734",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1111/jgh.16038"
}
},
{
"@type": "ScholarlyArticle",
"name": "Uncovering psychiatric phenotypes using unsupervised machine learning: A data-driven symptoms approach.",
"datePublished": "2023-02-21",
"url": "https://questionsmedicales.fr/article/36804948",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1192/j.eurpsy.2023.13"
}
}
],
"breadcrumb": {
"@type": "BreadcrumbList",
"itemListElement": [
{
"@type": "ListItem",
"position": 1,
"name": "questionsmedicales.fr",
"item": "https://questionsmedicales.fr"
},
{
"@type": "ListItem",
"position": 2,
"name": "Environnement et santé publique",
"item": "https://questionsmedicales.fr/mesh/D004778"
},
{
"@type": "ListItem",
"position": 3,
"name": "Santé publique",
"item": "https://questionsmedicales.fr/mesh/D011634"
},
{
"@type": "ListItem",
"position": 4,
"name": "Méthodes épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D004812"
},
{
"@type": "ListItem",
"position": 5,
"name": "Caractéristiques des études épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D016020"
},
{
"@type": "ListItem",
"position": 6,
"name": "Études épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D016021"
},
{
"@type": "ListItem",
"position": 7,
"name": "Analyse de série chronologique interrompue",
"item": "https://questionsmedicales.fr/mesh/D065186"
}
]
}
},
{
"@type": "MedicalWebPage",
"name": "Article complet : Analyse de série chronologique interrompue - Questions et réponses",
"headline": "Questions et réponses médicales fréquentes sur Analyse de série chronologique interrompue",
"description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.",
"datePublished": "2025-05-12",
"inLanguage": "fr",
"hasPart": [
{
"@type": "MedicalWebPage",
"name": "Diagnostic",
"headline": "Diagnostic sur Analyse de série chronologique interrompue",
"description": "Comment identifier une série chronologique interrompue ?\nQuels outils sont utilisés pour l'analyse ?\nQuelles données sont nécessaires pour l'analyse ?\nComment évaluer la validité des résultats ?\nQuels biais peuvent affecter l'analyse ?",
"url": "https://questionsmedicales.fr/mesh/D065186?mesh_terms=Unsupervised+Machine+Learning&page=2#section-diagnostic"
},
{
"@type": "MedicalWebPage",
"name": "Symptômes",
"headline": "Symptômes sur Analyse de série chronologique interrompue",
"description": "Quels symptômes peuvent être analysés ?\nComment les symptômes évoluent-ils après une intervention ?\nPeut-on mesurer des symptômes subjectifs ?\nLes symptômes sont-ils influencés par des facteurs externes ?\nComment les symptômes sont-ils collectés ?",
"url": "https://questionsmedicales.fr/mesh/D065186?mesh_terms=Unsupervised+Machine+Learning&page=2#section-symptômes"
},
{
"@type": "MedicalWebPage",
"name": "Prévention",
"headline": "Prévention sur Analyse de série chronologique interrompue",
"description": "Comment l'analyse aide-t-elle à la prévention ?\nQuels programmes peuvent être analysés ?\nComment mesurer l'impact d'une campagne de prévention ?\nQuels indicateurs de prévention sont pertinents ?\nPeut-on évaluer des interventions non médicales ?",
"url": "https://questionsmedicales.fr/mesh/D065186?mesh_terms=Unsupervised+Machine+Learning&page=2#section-prévention"
},
{
"@type": "MedicalWebPage",
"name": "Traitements",
"headline": "Traitements sur Analyse de série chronologique interrompue",
"description": "Quels traitements peuvent être évalués par cette méthode ?\nComment mesurer l'efficacité d'un traitement ?\nPeut-on comparer plusieurs traitements ?\nQuels indicateurs de traitement sont utilisés ?\nComment les effets secondaires sont-ils pris en compte ?",
"url": "https://questionsmedicales.fr/mesh/D065186?mesh_terms=Unsupervised+Machine+Learning&page=2#section-traitements"
},
{
"@type": "MedicalWebPage",
"name": "Complications",
"headline": "Complications sur Analyse de série chronologique interrompue",
"description": "Quelles complications peuvent être analysées ?\nComment les complications sont-elles mesurées ?\nLes complications sont-elles influencées par le temps ?\nPeut-on prédire des complications futures ?\nComment gérer les complications identifiées ?",
"url": "https://questionsmedicales.fr/mesh/D065186?mesh_terms=Unsupervised+Machine+Learning&page=2#section-complications"
},
{
"@type": "MedicalWebPage",
"name": "Facteurs de risque",
"headline": "Facteurs de risque sur Analyse de série chronologique interrompue",
"description": "Quels facteurs de risque peuvent être analysés ?\nComment les facteurs de risque influencent-ils les résultats ?\nPeut-on identifier des facteurs de risque modifiables ?\nComment les facteurs de risque sont-ils mesurés ?\nLes facteurs de risque changent-ils avec le temps ?",
"url": "https://questionsmedicales.fr/mesh/D065186?mesh_terms=Unsupervised+Machine+Learning&page=2#section-facteurs de risque"
}
]
},
{
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "Comment identifier une série chronologique interrompue ?",
"position": 1,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il faut observer des changements significatifs dans les données après une intervention."
}
},
{
"@type": "Question",
"name": "Quels outils sont utilisés pour l'analyse ?",
"position": 2,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des logiciels statistiques comme R ou SAS sont souvent utilisés pour l'analyse."
}
},
{
"@type": "Question",
"name": "Quelles données sont nécessaires pour l'analyse ?",
"position": 3,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des données chronologiques avant et après l'intervention sont essentielles."
}
},
{
"@type": "Question",
"name": "Comment évaluer la validité des résultats ?",
"position": 4,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il faut vérifier la robustesse des résultats par des tests de sensibilité."
}
},
{
"@type": "Question",
"name": "Quels biais peuvent affecter l'analyse ?",
"position": 5,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les biais de sélection et de mesure peuvent fausser les résultats."
}
},
{
"@type": "Question",
"name": "Quels symptômes peuvent être analysés ?",
"position": 6,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des symptômes comme la fréquence des hospitalisations ou des décès peuvent être mesurés."
}
},
{
"@type": "Question",
"name": "Comment les symptômes évoluent-ils après une intervention ?",
"position": 7,
"acceptedAnswer": {
"@type": "Answer",
"text": "L'analyse peut montrer une diminution ou une augmentation des symptômes post-intervention."
}
},
{
"@type": "Question",
"name": "Peut-on mesurer des symptômes subjectifs ?",
"position": 8,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, des échelles de mesure peuvent évaluer des symptômes subjectifs comme la douleur."
}
},
{
"@type": "Question",
"name": "Les symptômes sont-ils influencés par des facteurs externes ?",
"position": 9,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, des facteurs comme la saisonnalité peuvent influencer les symptômes observés."
}
},
{
"@type": "Question",
"name": "Comment les symptômes sont-ils collectés ?",
"position": 10,
"acceptedAnswer": {
"@type": "Answer",
"text": "Ils peuvent être collectés par des enquêtes, des dossiers médicaux ou des observations."
}
},
{
"@type": "Question",
"name": "Comment l'analyse aide-t-elle à la prévention ?",
"position": 11,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle permet d'évaluer l'impact des programmes de prévention sur des résultats de santé."
}
},
{
"@type": "Question",
"name": "Quels programmes peuvent être analysés ?",
"position": 12,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des programmes de vaccination, de dépistage ou d'éducation à la santé peuvent être évalués."
}
},
{
"@type": "Question",
"name": "Comment mesurer l'impact d'une campagne de prévention ?",
"position": 13,
"acceptedAnswer": {
"@type": "Answer",
"text": "L'impact est mesuré par des changements dans les comportements ou les taux de maladies."
}
},
{
"@type": "Question",
"name": "Quels indicateurs de prévention sont pertinents ?",
"position": 14,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des indicateurs comme le taux d'incidence ou de prévalence des maladies sont pertinents."
}
},
{
"@type": "Question",
"name": "Peut-on évaluer des interventions non médicales ?",
"position": 15,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, des interventions comme des changements de politique ou d'environnement peuvent être analysées."
}
},
{
"@type": "Question",
"name": "Quels traitements peuvent être évalués par cette méthode ?",
"position": 16,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des traitements médicaux, chirurgicaux ou comportementaux peuvent être analysés."
}
},
{
"@type": "Question",
"name": "Comment mesurer l'efficacité d'un traitement ?",
"position": 17,
"acceptedAnswer": {
"@type": "Answer",
"text": "L'efficacité est mesurée par des changements dans les résultats cliniques après l'intervention."
}
},
{
"@type": "Question",
"name": "Peut-on comparer plusieurs traitements ?",
"position": 18,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, l'analyse peut comparer l'impact de différents traitements sur les mêmes résultats."
}
},
{
"@type": "Question",
"name": "Quels indicateurs de traitement sont utilisés ?",
"position": 19,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des indicateurs comme le taux de guérison ou la réduction des symptômes sont utilisés."
}
},
{
"@type": "Question",
"name": "Comment les effets secondaires sont-ils pris en compte ?",
"position": 20,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les effets secondaires doivent être mesurés et analysés pour évaluer la sécurité du traitement."
}
},
{
"@type": "Question",
"name": "Quelles complications peuvent être analysées ?",
"position": 21,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des complications comme les infections ou les effets indésirables des traitements peuvent être évaluées."
}
},
{
"@type": "Question",
"name": "Comment les complications sont-elles mesurées ?",
"position": 22,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles sont mesurées par des taux d'incidence ou des événements indésirables rapportés."
}
},
{
"@type": "Question",
"name": "Les complications sont-elles influencées par le temps ?",
"position": 23,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, certaines complications peuvent varier selon la période de suivi après l'intervention."
}
},
{
"@type": "Question",
"name": "Peut-on prédire des complications futures ?",
"position": 24,
"acceptedAnswer": {
"@type": "Answer",
"text": "L'analyse peut aider à prédire des complications en fonction des tendances observées."
}
},
{
"@type": "Question",
"name": "Comment gérer les complications identifiées ?",
"position": 25,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des stratégies de gestion doivent être mises en place pour minimiser les complications."
}
},
{
"@type": "Question",
"name": "Quels facteurs de risque peuvent être analysés ?",
"position": 26,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des facteurs comme l'âge, le sexe, et les comorbidités peuvent être évalués."
}
},
{
"@type": "Question",
"name": "Comment les facteurs de risque influencent-ils les résultats ?",
"position": 27,
"acceptedAnswer": {
"@type": "Answer",
"text": "Ils peuvent modifier l'impact d'une intervention sur les résultats de santé observés."
}
},
{
"@type": "Question",
"name": "Peut-on identifier des facteurs de risque modifiables ?",
"position": 28,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, l'analyse peut aider à identifier des facteurs de risque qui peuvent être modifiés."
}
},
{
"@type": "Question",
"name": "Comment les facteurs de risque sont-ils mesurés ?",
"position": 29,
"acceptedAnswer": {
"@type": "Answer",
"text": "Ils sont mesurés par des questionnaires, des dossiers médicaux ou des études épidémiologiques."
}
},
{
"@type": "Question",
"name": "Les facteurs de risque changent-ils avec le temps ?",
"position": 30,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, les facteurs de risque peuvent évoluer en fonction des changements environnementaux ou sociaux."
}
}
]
}
]
}
The academic curriculum has shown to promote sedentary behavior in college students. This study aimed to profile the physical fitness of physical education majors using unsupervised machine learning a...
Despite the increasing availability of electronic healthcare record (EHR) data and wide availability of plug-and-play machine learning (ML) Application Programming Interfaces, the adoption of data-dri...
Observational EHR data from a tertiary paediatric hospital, containing 61 522 unique patients and 3315 unique ICD-10 diagnosis codes was used, after preprocessing. K-means clustering was applied to id...
Four age clusters of diseases were identified, broadly aligning to ages between: 0 and 1; 1 and 5; 5 and 13; 13 and 18. Diagnoses, within the clusters, aligned to existing knowledge regarding the prop...
Unsupervised ML applied to EHR data identifies clinically relevant age distributions of diagnoses which can augment existing decision making. However, biases within healthcare datasets dramatically im...
Cell deformability is a well-established marker of cell states for diagnostic purposes. However, the measurement of a wide range of different deformability levels is still challenging, especially in c...
Immune-related liver injury (liver-irAE) is a clinical problem with a potentially poor prognosis....
We retrospectively collected clinical data from patients treated with immune checkpoint inhibitors between September 2014 and December 2021 at the Nagoya University Hospital. Using an unsupervised mac...
This study included a total of 702 patients. Among them, 492 (70.1%) patients were male, and the mean age was 66.6 years. During the mean follow-up period of 423 days, severe liver-irAEs (Common Termi...
The combined assessment of multiple markers and body temperature may help stratify high-risk groups for developing liver-irAE....
Current categorical classification systems of psychiatric diagnoses lead to heterogeneity of symptoms within disorders and common co-occurrence of disorders. We investigated the heterogeneous and over...
We assessed a total of 43 symptoms in a discovery sample of 6,602 participants of the population-based Rotterdam Study between 2009 and 2013, and in a replication sample of 3,005 participants between ...
First, clustering analyses of the questionnaire items suggested a three-cluster solution representing clusters of "mixed" symptoms, "depressed affect and nervousness", and "troubled sleep and interper...
We identified three clusters of psychiatric symptoms that most commonly co-occur in a population-based sample. These symptoms clustered stable over samples, but across the topics of depression, anxiet...
To achieve high quality omics results, systematic variability in mass spectrometry (MS) data must be adequately addressed. Effective data normalization is essential for minimizing this variability. Th...
Schizophrenia and Major Depressive Disorder (MDD) are highly burdensome mental disorders, with significant cost to both individuals and society. Despite these disorders representing distinct clinical ...
The present analyses utilized raw minute-level actigraphy data from three diagnostic groups: individuals with schizophrenia (N = 23), individuals with depression (N = 22), and controls (N = 32), respe...
We find distinct actigraphic phenotypes, which differ between diagnostic groups, suggesting that unsupervised clustering of naturalistic data aligns with existing diagnostic constructs. Further, we fo...
However, diagnostic group differences only consider biobehavioral trends captured by raw actigraphy information....
Passively-collected movement information combined with unsupervised deep learning algorithms shows promise in identifying naturalistic phenotypes in individuals with mental health disorders, specifica...
Due to the high mutation rate of the virus, the COVID-19 pandemic evolved rapidly. Certain variants of the virus, such as Delta and Omicron emerged with altered viral properties leading to severe tran...
It is challenging to predict which patients who meet criteria for subcortical ischemic vascular disease (SIVD) will ultimately progress to subcortical vascular cognitive impairment (SVCI)....
We collected clinical information, neuropsychological assessments, T1 imaging, diffusion tensor imaging, and resting-state functional magnetic resonance imaging from 83 patients with SVCI and 53 age-m...
The accuracy, sensitivity, and specificity of the unsupervised machine learning model were 86.03%, 79.52%, and 96.23% and 80.52%, 71.11%, and 93.75% for internal and external cohort, respectively....
We developed an accurate and accessible clinical tool which requires only data from routine imaging to predict patients at risk of progressing from SIVD to SVCI....
Our unsupervised machine learning model provides an accurate and accessible clinical tool to predict patients at risk of progressing from subcortical ischemic vascular disease (SIVD) to subcortical va...
Statins could elevate hepatic transaminase in ischemic stroke patients. There needed to be more evidence on which method stopped statins or adjusting the dose of statins was better for patients. And n...
We collected ischaemic stroke patients with elevated hepatic transaminase when they take statins. The outcome was a recurrent stroke rate, transaminase value after stopping or adjusted, mortality, and...
The patients stopping statins had a higher stroke recurrence and rate of FFO (mRS 0-2), a lower mean value of transaminase, and mortality. By difference unsupervised machine learning group, the km2 gr...
For ischemic patients with elevated hepatic transaminase, stopping statins temporarily was a better choice of treatment strategy. These patients who were younger, male, with a lesser NIHSS score at ad...