An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: alternatives to systemic insecticides.

Biological control Fipronil IPM Insurance cover Mutual funds Neonicotinoids Pest control Resistance Review Systemic insecticides

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Mar 2021
Historique:
received: 08 08 2017
accepted: 13 12 2017
pubmed: 27 2 2018
medline: 5 3 2021
entrez: 26 2 2018
Statut: ppublish

Résumé

Over-reliance on pesticides for pest control is inflicting serious damage to the environmental services that underpin agricultural productivity. The widespread use of systemic insecticides, neonicotinoids, and the phenylpyrazole fipronil in particular is assessed here in terms of their actual use in pest management, effects on crop yields, and the development of pest resistance to these compounds in many crops after two decades of usage. Resistance can only be overcome in the longterm by implementing methods that are not exclusively based on synthetic pesticides. A diverse range of pest management tactics is already available, all of which can achieve efficient pest control below the economic injury level while maintaining the productivity of the crops. A novel insurance method against crop failure is shown here as an example of alternative methods that can protect farmer's crops and their livelihoods without having to use insecticides. Finally, some concluding remarks about the need for a new framework for a truly sustainable agriculture that relies mainly on natural ecosystem services instead of chemicals are included; this reinforcing the previous WIA conclusions (van der Sluijs et al. Environ Sci Pollut Res 22:148-154, 2015).

Identifiants

pubmed: 29478160
doi: 10.1007/s11356-017-1052-5
pii: 10.1007/s11356-017-1052-5
pmc: PMC7921064
doi:

Substances chimiques

Insecticides 0
Neonicotinoids 0
Pesticides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

11798-11820

Références

Afzal MBS, Shad SA, Abbas N, Ayyaz M, Walker WB (2015) Cross-resistance, the stability of acetamiprid resistance and its effect on the biological parameters of cotton mealybug, Phenacoccus solenopsis (Homoptera: Pseudococcidae), in Pakistan. Pest Manag Sci. 71:151–158
Ahmad M, Akhtar S (2016) Development of resistance to insecticides in the invasive mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in Pakistan. Crop Prot 88:96–102
Ahmad S, Pozzebon A, Duso C (2013) Augmentative releases of the predatory mite Kampimodromus aberrans in organic and conventional apple orchards. Crop Prot 52:47–56. https://doi.org/10.1016/j.cropro.2013.05.008
doi: 10.1016/j.cropro.2013.05.008
Alyokhin A, Dively G, Patterson M, Castaldo C, Rogers D, Mahoney M, Wollam J (2007) Resistance and cross-resistance to imidacloprid and thiamethoxam in the Colorado potato beetle Leptinotarsa decemlineata. Pest Manag Sci. 63:32–41
Andreev R, Kutinkova H, Rasheva D (2012) Non-chemical control of Aphis spiraecola Patch. and Dysaphis plantaginea Pass. on apple. J Biopesticides 5:239–242
Angeli G, Anfora G, Baldessari M, Germinara GS, Rama F, De Cristofaro A, Ioriatti C (2007) Mating disruption of codling moth Cydia pomonella with high densities of Ecodian sex pheromone dispensers. J Appl Entomol 131:311–318. https://doi.org/10.1111/j.1439-0418.2007.01172.x
doi: 10.1111/j.1439-0418.2007.01172.x
Asahi M, Kobayashi M, Matsui H, Nakahira K (2015) Differential mechanisms of action of the novel γ-aminobutyric acid receptor antagonist ectoparasiticides fluralaner (A1443) and fipronil. Pest Manag Sci. 71:91–95
Bao H, Shao X, Zhang Y, Deng Y, Xu X, Liu Z, Li Z (2016) Specific synergist for neonicotinoid insecticides: IPPA08, a cis-neonicotinoid compound with a unique oxabridged substructure. J Agric Food Chem. 64:5148–5155
Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P et al (2015) Eight principles of integrated pest management. Agron Sustain Develop. 35:1199–1215
Basit M, Sayyed AH, Saeed S, Saleem MA (2012) Lack of fitness costs associated with acetamiprid resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). J Econ Entomol. 105:1401–1406
Basit M, Saeed S, Saleem MA, Sayyed AH (2013) Can resistance in Bemisia tabaci (Homoptera: Aleyrodidae) be overcome with mixtures of neonicotinoids and insect growth regulators? Crop Prot 44:135–141
Bass C, Denholm I, Williamson MS, Nauen R (2015) The global status of insect resistance to neonicotinoid insecticides. Pest Biochem Physiol 121:78–87
Batáry P, Gallé R, Riesch F, Fischer C, Dormann CF, Mußhoff O, Császár P, Fusaro S, Gayer C, Happe AK et al (2017) The former Iron Curtain still drives biodiversity–profit trade-offs in German agriculture. Nat Ecol Evol. https://doi.org/10.1038/s41559-017-0272-x
Beers EH, Schmidt RA (2014) Impacts of orchard pesticides on Galendromus occidentalis: Lethal and sublethal effects. Crop Prot 56:16–24. https://doi.org/10.1016/j.cropro.2013.10.010
doi: 10.1016/j.cropro.2013.10.010
Beers EH, Suckling DM, Prokopy RJ, Avilla J (2003) Apples: botany, production and uses. In: Ferree DC, Warrington IJ (eds) Ecology and management of apple arthropod pests. CABI Publishing, Wallingford, pp. 489–519. https://doi.org/10.1079/9780851995922.0489
Beers EH, Van Steenwyk RA, Shearer PW, Coates WW, Grant JA (2011) Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manag Sci. 67:1386–1395
Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. PNAS 110:11039–11043
Benefer CM, Knight ME, Ellis JS, Hicks H, Blackshaw RP (2012) Understanding the relationship between adult and larval Agriotes distributions: the effect of sampling method, species identification and abiotic variables. Appl Soil Ecol. 53:39–48. https://doi.org/10.1016/j.apsoil.2011.11.004
doi: 10.1016/j.apsoil.2011.11.004
Bijleveld van Lexmond M, Bonmatin JM, Goulson D, Noome DA (2015) Worldwide integrated assessment on systemic pesticides. Environ Sci Pollut Res. 22:1–4
Bingham G, Gunning RV, Delogu G, Borzatta V, Field LM, Moores GD (2008) Temporal synergism can enhance carbamate and neonicotinoid insecticidal activity against resistant crop pests. Pest Manag Sci. 64:81–85
Blackshaw RP, Hicks H (2013) Distribution of adult stages of soil insect pests across an agricultural landscape. J Pest Sci. 86:53–62. https://doi.org/10.1007/s10340-012-0413-6
doi: 10.1007/s10340-012-0413-6
Bohnenblust E, Hull LA, Krawczyk G (2011) A comparison of various mating disruption technologies for control of two internally feeding Lepidoptera in apples. Entomol Exp Appl. 138:202–211. https://doi.org/10.1111/j.1570-7458.2010.01089.x
doi: 10.1111/j.1570-7458.2010.01089.x
Bonmatin JM (2016) Néonicotinoïdes: impacts directs ou indirects sur les abeilles et la biodiversité & développement des alternatives. Forum Eco-Tox de la Fondation Rovaltain, 11-13 October 2016. http://fcsrovaltain.org/assets/4-8-s2-eco-tox2016_bonmatin.pdf . Assessed 21 Oct 2017
Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EAD et al (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res. 22:35–67
Bosch D, Rodríguez MA, Avilla J (2016) Captures of MFO-resistant Cydia pomonella adults as affected by lure, crop management system and flight. Bull Entomol Res. 106:54–62. https://doi.org/10.1017/S0007485315000772
doi: 10.1017/S0007485315000772
Brandl MA, Schumann M, Przyklenk M, Patel A, Vidal S (2017) Wireworm damage reduction in potatoes with an attract-and-kill strategy using Metarhizium brunneum. J Pest Sci. 90:479–493. https://doi.org/10.1007/s10340-016-0824-x
doi: 10.1007/s10340-016-0824-x
Broughton S, Rahman T (2017) Evaluation of lures and traps for male and female monitoring of Mediterranean fruit fly in pome and stone fruit. J Appl Entomol. 141:441–449
Brück E, Elbert A, Fischer R, Krueger S, Kühnhold J, Klueken AM, Nauen R, Niebes J, Reckmann U, Schnorbach H, Steffens R, van Waetermeulen X (2009) Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: biological profile and field performance. Crop Prot 28:838–844. https://doi.org/10.1016/j.cropro.2009.06.015
doi: 10.1016/j.cropro.2009.06.015
Bruck DJ, Bolda M, Tanigoshi L, Klick J, Kleiber J, Defrancesco J, Gerdeman B, Spitler H (2011) Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manag Sci. 67:1375–1385. https://doi.org/10.1002/ps.2242
doi: 10.1002/ps.2242
Budge GE, Garthwaite D, Crow A, Boatman ND, Delaplane KS, Brown MA, Thygesen HH, Pietra-Valle S (2015) Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape. Sci Rep. 5:12574. https://doi.org/10.1038/srep12574
doi: 10.1038/srep12574
Buzzetti K, Chorbadjian RA, Nauen R (2015) Resistance management for San Jose Scale (Hemiptera: Diaspididae). J Econ Entomol. 108:2743–2752
Byrne FJ, Castle S, Prabhaker N, Toscano NC (2003) Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest Manag Sci. 59:347–352
Calkins CO, Faust RJ (2003) Overview of areawide programs and the program for suppression of codling moth in the western USA directed by the United States Department of Agriculture—Agricultural Research Service. Pest Manag Sci. 59:601–604. https://doi.org/10.1002/ps.712
doi: 10.1002/ps.712
Castle SJ, Prabhaker N (2013) Monitoring changes in Bemisia tabaci (Hemiptera: Aleyrodidae) susceptibility to neonicotinoid insecticides in Arizona and California. J Econ Entomol. 106:1404–1413
Castro A, Lacerda M, Zanuncio T, Ramalho FS, Polanczyk R, Serrão J, Zanuncio J (2012) Effect of the insect growth regulator diflubenzuron on the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Ecotoxicology 21:96–103
Chagnon M, Kreutzweiser D, Mitchell ED, Morrissey CA, Noome DA, Van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res. 22:119–134
Cichon LI, Garrido SAS, Lago JD, Menni MF (2013) Control of green peach aphid Myzus persicae in organic plum orchards (conference paper). Acta Hortic. 1001:115–120. https://doi.org/10.17660/ActaHortic.2013.1001.11
Cimino AM, Boyles AL, Thayer KA, Perry MJ (2017) Effects of neonicotinoid pesticide exposure on human health: a systematic review. Environ Health Perspect. 125:155–162
Clements J, Schoville S, Peterson N, Lan Q, Groves RL (2016) Characterizing molecular mechanisms of imidacloprid resistance in select populations of Leptinotarsa decemlineata in the Central Sands Region of Wisconsin. PLoS One 11:e0147844
Clements J, Schoville S, Clements N, Chapman RGL (2017) Temporal patterns of imidacloprid resistance throughout a growing season in Leptinotarsa decemlineata populations. Pest Manag Sci. 3:641–650
Cocco A, Lentini A, Serra G (2014) Mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in vineyards using reservoir pheromone dispensers. J Insect Sci 14(1):144. https://doi.org/10.1093/jisesa/ieu006
Cocco A, Marras PM, Muscas E, Mura A, Lentini A (2015) Variation of life-history parameters of Planococcus ficus (Hemiptera: Pseudococcidae) in response to grapevine nitrogen fertilization. J Appl Entomol. 139:519–528. https://doi.org/10.1111/jen.12192
doi: 10.1111/jen.12192
Costello MJ (2008) Regulated deficit irrigation and density of Erythroneura spp. (Hemiptera: Cicadellidae) on grape. J Econ Entomol. 101:1287–1294. https://doi.org/10.1603/0022-0493(2008)101[1287:RDIADO]2.0.CO;2
Costello MJ, Daane KM (2003) Spider and leafhopper (Erythroneura spp.) response to vineyard ground cover. Environ Entomol. 32:1085–1098. https://doi.org/10.1603/0046-225X-32.5.1085
doi: 10.1603/0046-225X-32.5.1085
Coy MR, Bin L, Stelinski LL (2016) Reversal of insecticide resistance in Florida populations of Diaphorina citri (Hemiptera: Liviidae). Fla Entomol 99:26–32
Cross JV, Solomon MG, Chandler D, Jarrett P, Richardson PN, Winstanley D, Bathon H, Huber J, Keller B, Langenbruch GA, Zimmermann G (1999) Biocontrol of pests of apples and pears in northern and central Europe: 1. Microbial agents and nematodes. Biocontrol Sci Technol. 9:125–149. https://doi.org/10.1080/09583159929721
doi: 10.1080/09583159929721
Cutler P, Slater R, Edmunds AJF, Maienfisch P, Hall RG et al (2013) Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid. Pest Manag Sci. 69:607–619
Daane KM, Williams LE (2003) Manipulating vineyard irrigation amounts to reduce insect pest damage. Ecol Appl. 13:1650–1666. https://doi.org/10.1890/02-5328
doi: 10.1890/02-5328
Daane KM, Yokota GY, Zheng Y, Hagen KS (1996) Inundative release of common green lacewings (Neuroptera: Chrysopidae) to suppress Erythroneura variabilis and E. elegantula (Homoptera: Cicadellidae) in vineyards. Environ Entomol. 25:1224–1234. https://doi.org/10.1093/ee/25.5.1224
doi: 10.1093/ee/25.5.1224
Daane KM, Malakar-Kuenen RD, Walton VM (2004) Temperature-dependent development of Anagyrus pseudococci (Hymenoptera: Encyrtidae) as a parasitoid of the vine mealybug, Planococcus ficus (Homoptera: Pseudococcidae). Biol Control 31:123–132
Daane KM, Bentley WJ, Millar JG, Walton VM, Cooper ML, Biscay P, Yokota GY (2008) Integrated management of mealybugs in California vineyards. Acta Hortic. 785:235–252. https://doi.org/10.17660/ActaHortic.2008.785.30
doi: 10.17660/ActaHortic.2008.785.30
Darriet F, Chandre F (2013) Efficacy of six neonicotinoid insecticides alone and in combination with deltamethrin and piperonyl butoxide against pyrethroid-resistant Aedes aegypti and Anopheles gambiae (Diptera: Culicidae). Pest Manag Sci. 69:905–910
Deguines N, Jono C, Baude M, Henry M, Julliard R, Fontaine C (2014) Large-scale trade-off between agricultural intensification and crop pollination services. Front Ecol Environ. 12:212–217
Dercks W, Hackel S, Witte H, Michaelsen M, Neuber M, Gärber U, Kleeberg H (2014) Plant Protection with Plant Extracts (Botanicals): background, Two Case Studies, Conclusions and Positioning | [PflanzenschutzmitPflanzenextrakten (Botanicals): Hintergründe, zweiFallstudien, Schlussfolgerungen und Standortbestimmung] Gesunde Pflanzen 66: 1-16. https://link.springer.com/article/10.1007%2Fs10343-013-0313-6 . Assessed 12 July 2017
Dib H, Sauphanor B, Capowiez Y (2010) Effect of codling moth exclusion nets on the rosy apple aphid, Dysaphis plantaginea, and its control by natural enemies. Crop Prot 29:1502–1513. https://doi.org/10.1016/j.cropro.2010.08.012
doi: 10.1016/j.cropro.2010.08.012
Dib H, Sauphanor B, Capowiez Y (2016) Effect of management strategies on arthropod communities in the colonies of rosy apple aphid, Dysaphis plantaginea Passerini (Hemiptera: Aphididae) in south-eastern France. Agric Ecosyst Environ. 216:203–206. https://doi.org/10.1016/j.agee.2015.10.003
doi: 10.1016/j.agee.2015.10.003
Dobson RC, Rogers M, Moore JL, Bessin RT (2016) Exclusion of the brown marmorated stink bug from organically grown peppers using barrier screens. Hortic Technol. 26:191–198
Douglas M, Tooker JF (2015) Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in U.S. field crops. Environ Sci Technol. 49:5088–5097
Douglas M, Tooker JF (2016) Meta-analysis reveals that seed-applied neonicotinoids and pyrethroids have similar negative effects on abundance of arthropod natural enemies. PeerJ 4:e2776. https://doi.org/10.7717/peerj.2776
doi: 10.7717/peerj.2776
Duso C, Vettorazzo E (1999) Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp Appl Acarol 23:741–763. https://doi.org/10.1023/A:1006297225577
doi: 10.1023/A:1006297225577
Duso C, Trentin R, Borgo M, Egger E (1985) Influenza della termoregolazione estiva mediante acqua sulle popolazioni di Planococcus ficus Sign. su vite. Rivista di Viticoltura e di Enologia 38:567–607
Duso C, Fontana P, Malagnini V (2004) Diversity and abundance of phytoseiid mites (acari: phytoseiidae) in vineyards and the surrounding vegetation in northeastern Italy. Acarologia 44:31–47 https://www1.montpellier.inra.fr/cbgp/acarologia/export_pdf.php?id=42&typefile=pd . Assessed 09 September 2017
Duso C, Pozzebon A, Kreiter S, Tixier M, Candolfi M (2012) Management of phytophagous mites in European Vineyards. In: Bostanian NJ, Vincent C, Isaacs R (eds) Arthropod management in vineyards: pests, approaches, and future directions. Springer, Netherlands, pp 191–217
Duso C, Ahmad S, Tirello P, (...), Malagnini V, Angeli G (2014) The impact of insecticides applied in apple orchards on the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae). Exp Appl Acarol 62:391-414
Edwards OR, Franzmann B, Thackray D, Micic S (2008) Insecticide resistance and implications for future aphid management in Australian grains and pastures: a review. Aust J Exp Agric. 48:1523–1530
El Wakeil NE, Farghaly HT, Ragab ZA (2008) Efficacy of inundative releases of Trichogramma evanescens in controlling Lobesia botrana in vineyards in Egypt. J Pest Sci. 81:49–55. https://doi.org/10.1007/s10340-007-0184-7
doi: 10.1007/s10340-007-0184-7
EU (2009) Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides, OJ EU L309, 71–86, 24.11.2009
EU (2013a) Commission implementing Regulation (EU) No 485/2013 of 24 May 2013 amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances. OJ EU L139, 12–26, 25.05.2013
EU (2013b) Commission implementing Regulation (EU) No 781/2013 of 14 August 2013 amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substance fipronil, and prohibiting the use and sale of seeds treated with plant protection products containing this active substances. OJ EU L219, 22–25, 15.08.2013
Ferrari R, Tassini C, Furlan L, Fracasso F, Sartori E, Codato F, Bin O (2015) La gestione degli elateridi con i fondi mutualistici. Terra e Vita 14:42–45 (in Italian). http://novagricoltura.edagricole.it/wp-content/uploads/sites/10/2015/04/La-gestione-degli-elateridi-Pagine-da-TV14-2015-2.pdf , assessed 9 September 2017
Fornasiero D, Duso C, Pozzebon A, Tomasi D, Gaiotti F, Pavan F (2012) Effects of irrigation on the seasonal abundance of Empoasca vitis in North-Italian vineyards. J Econ Entomol. 105:176–185. https://doi.org/10.1603/EC11218
doi: 10.1603/EC11218
Fornasiero D, Pavan F, Pozzebon A, Picotti P, Duso C (2016) Relative infestation level and sensitivity of grapevine cultivars to the leafhopper Empoasca vitis (Hemiptera: Cicadellidae). J Econ Entomol. 109(1):416–25. https://doi.org/10.1093/jee/tov313
Furlan L (2014) IPM thresholds for Agriotes wireworm species in maize in southern Europe. J Pest Sci. 87:609–617. https://doi.org/10.1007/s10340-014-0583-5
doi: 10.1007/s10340-014-0583-5
Furlan L, Kreutzweiser D (2015) Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry. Environ Sci Pollut Res. 22:135–147. https://doi.org/10.1007/s11356-014-3628-7
doi: 10.1007/s11356-014-3628-7
Furlan L, Contiero B, Sartori E, Fracasso F, Sartori A, Vasileiadis VP, Sattin M (2015) Mutual funds are a key tool for IPM implementation: a case study of soil insecticides in maize shows the way. IPM Innovation in Europe, Poznan 14–16 January, Abstract book, 159. http://www.pure-ipm.eu/sites/default/files/content/files/Book%20of%20Abstracts%20-%20IPM%20Innovation%20in%20Europe_sessions-annuals.pdf . Assessed 9 Sept 2017
Furlan L, Vasileiadis VP, Chiarini F, Huiting H, Leskovšek R, Razinger J, Holbe JI, Sartori E, Urek G, Verschweleg A, Benevegnù I, Sattin M (2016) Risk assessment of soil-pest damage to grain maize in Europe within the framework of integrated pest management. Crop Prot 97:52–59. https://doi.org/10.1016/j.cropro.2016.11.029
Furlan L, Contiero B, Chiarini F, Colauzzi M, Sartori E, Benevegnù I, Giandon P (2017) Risk assessment of maize damage by wireworms (Coleoptera: Elateridae) as the first step in implementing IPM and in reducing the environmental impact of soil insecticides. Environ Sci Pollut Res. 24:236–251. https://doi.org/10.1007/s11356-016-7692-z
doi: 10.1007/s11356-016-7692-z
Gallardo A, López MÁ, Lara M, Maistrello L, Molejón A, Ocete R (2016) Resurgence of minor pests following the implementation of mating disruption against Lobesia botrana (Denis & Schiffermüller) (Lepidoptera, Tortricidae) in Sherry vineyards (Spain). Vitis J Grapevine Res 55:37–43. https://doi.org/10.5073/vitis.2016.55.37-43
doi: 10.5073/vitis.2016.55.37-43
Garrood WT, Zimmer CT, Gorman KJ, Nauen R, Bass C, Davies TGE (2016) Field-evolved resistance to imidacloprid and ethiprole in populations of brown planthopper Nilaparvata lugens collected from across south and east Asia. Pest Manag Sci. 72:140–149
Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res. 22:103–118
Giorio C, Anton Safer A, Sánchez-Bayo F, Tapparo A, Lentola A, Girolami V, Bijleveld van Lexmond M, Bonmatin JM (2017) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate and transport. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0394-3
Gore J, Cook D, Catchot A, Leonard BR, Stewart SD, Lorenz G, Kerns D (2013) Cotton aphid (Heteroptera: Aphididae) susceptibility to commercial and experimental insecticides in the southern United States. J Econ Entomol. 106:1430–1439
Gorman K, Liu Z, Denholm I, Brüggen K-U, Nauen R (2008) Neonicotinoid resistance in rice brown planthopper, Nilaparvata lugens. Pest Manag Sci. 64:1122–1125
Gorman K, Slater R, Blande JD, Clarke A, Wren J, McCaffery A, Denholm I (2010) Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci. 66:1186–1190
Gurr GM, Heong KL, Cheng JA, Catindig J (2012) Ecological engineering against insect pests in Asian irrigated rice. In: Gurr GM, Wratten SD, Snyder WE, Read DMY (eds) Biodiversity and insect pests: key issues for sustainable management. John Wiley & Sons, Ltd., UK, pp 214–229
Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G, Yao X, Cheng J, Zhu Z, Catindig JL et al (2016) Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nature Plants 2:16014. https://doi.org/10.1038/nplants.2016.14
doi: 10.1038/nplants.2016.14
Hadi BAR, García CPF, Heong KL (2015) Susceptibility of Nilaparvata lugens (Hemipteran: Delphacidae) populations in the Philippines to insecticides. Crop Prot 76:100–102
Heong KL, Escalada MM, Chien HV, Cuong LQ (2014) Restoration of rice landscape biodiversity by farmers in Vietnam through education and motivation using media. Surv Perspect Integrating Environ Soc (S.A.P.I.EN.S.) 7(2). http://sapiens.revues.org/1578 . Assessed 9 Aug 2017
Herbert KS, Hoffmann AA, Powell KS (2008) Assaying the potential benefits of thiamethoxam and imidacloprid for phylloxera suppression and improvements to grapevine vigour. Crop Prot 27:1229–1236
Hermann A, Brunner N, Hann P, Wrbka T, Kromp B (2013) Correlations between wireworm damages in potato fields and landscape structure at different scales. J Pest Sci. 86:41–51. https://doi.org/10.1007/s10340-012-0444-z
doi: 10.1007/s10340-012-0444-z
Hoi KK, Daborn PJ, Battlay P, Robin C, Batterham P, O'Hair RAJ, Donald WA (2014) Dissecting the insect metabolic machinery using twin ion mass spectrometry: a single P450 enzyme metabolizing the insecticide imidacloprid in vivo. Anal Chem. 86:3525–3532
Hokkanen HMT (2015) Integrated pest management at the crossroads: science, politics, or business (as usual)? Arthropod-Plant Interactions 9:543–545
Hokkanen HMT, Menzler-Hokkanen I, Keva M (2017) Long-term yield trends of insect-pollinated crops vary regionally and are linked to neonicotinoid use, landscape complexity, and availability of pollinators. Arthropod-Plant Interactions 11:449–461
Huseth AS, Chappell TM, Langdon K, Morsello SC, Martin S et al (2016) Frankliniella fusca resistance to neonicotinoid insecticides: an emerging challenge for cotton pest management in the eastern United States. Pest Manag Sci. 72:1934–1945
Ichinose K, Bang DV, Tuan DH, Dien LQ (2010) Effective use of neonicotinoids for protection of citrus seedlings from invasion by Diaphorina citri (Hemiptera: Psyllidae). J Econ Entomol. 103:127–135
Ioriatti C, Lucchi A (2016) Semiochemical strategies for tortricid moth control in apple orchards and vineyards in Italy. J Chem Ecol. 42:571–583
Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol. 104:1125–1137. https://doi.org/10.1603/EC10443
doi: 10.1603/EC10443
İşci M, Ay R (2017) Determination of resistance and resistance mechanisms to thiacloprid in Cydia pomonella L. (Lepidoptera: Tortricidae) populations collected from apple orchards in Isparta Province, Turkey. Crop Prot 91:82–88
Jepsen SJ, Rosenheim JA, Bench ME (2007) The effect of sulfur on biological control of the grape leafhopper, Erythroneura elegantula, by the egg parasitoid Anagrus erythroneurae. BioControl 52:721–732. https://doi.org/10.1007/s10526-006-9058-9
doi: 10.1007/s10526-006-9058-9
Jones MM, Robertson JL, Weinzierl RA (2010) Susceptibility of oriental fruit moth (Lepidoptera: Tortricidae) larvae to selected reduced-risk insecticides. J Econ Entomol. 103:1815–1820
Joussen N, Heckel DG, Haas M, Schuphan I, Schmidt B (2008) Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag Sci. 64:65–73
Jung J, Racca P, Schmitt J, Kleinhenz B (2014) SIMAGRIO-W: development of a prediction model for wireworms in relation to soil moisture, temperature and type. J Appl Entomol. 138:183–194. https://doi.org/10.1111/jen.12021
doi: 10.1111/jen.12021
Kabaluk T (2014) Targeting adult Elateridae as a concept for wireworm biocontrol. BioControl 59:607. https://doi.org/10.1007/s10526-014-9603-x
doi: 10.1007/s10526-014-9603-x
Kabaluk JT, Ericsson JD (2007) Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agron J. 99:1377–1391
Kabaluk JT, Vernon RS, Goettel MS (2007) Mortality and infection of Agriotes obscurus (Coleoptera: Elateridae) with inundative field applications of Metarhizium anisopliae. Phytoprotection 88:51–56
Kabaluk JT, LaFontaine JP, Borden JH (2015) An attract and kill tactic for click beetles based on Metarhiziumbrunneumand a new formulation of sex pheromone. J Pest Sci. 88:707–716
Kady HE, Devine GJ (2003) Insecticide resistance in Egyptian populations of the cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci. 59:865–871
Karatolos N, Denholm I, Williamson M, Nauen R, Gorman K (2010) Incidence and characterisation of resistance to neonicotinoid insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). Pest Manag Sci. 66:1304–1307
Kovács-Hostyánszki A, Espíndola A, Vanbergen AJ, Settele J, Kremen C, Dicks LV (2017) Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol Lett. 20:673–689
Kristensen M, Jespersen JB (2008) Susceptibility to thiamethoxam of Musca domestica from Danish livestock farms. Pest Manag Sci. 64:126–132
Kuhar TP, Kamminga K (2017) Review of the chemical control research on Halyomorpha halys in the USA. J Pest Sci. 90:1021–1031
Kuhar TP, Short BD, Krawczyk G, Leskey TC (2017) Deltamethrin-incorporated nets as an integrated pest management tool for the invasive Halyomorpha halys (Hemiptera: Pentatomidae). J Econ Entomol. 110:543–545
Lacey LA, Shapiro-Ilan DI (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu Rev Entomol. 53:121–144. https://doi.org/10.1146/annurev.ento.53.103106.093419
doi: 10.1146/annurev.ento.53.103106.093419
Lacey LA, Arthurs SP, Unruh TR, Headrick H, Fritts R Jr (2006) Entomopathogenic nematodes for control of codling moth (Lepidoptera: Tortricidae) in apple and pear orchards: effect of nematode species and seasonal temperatures, adjuvants, application equipment, and post-application irrigation. Biol Control 37:214–223. https://doi.org/10.1016/j.biocontrol.2005.09.015
doi: 10.1016/j.biocontrol.2005.09.015
Leach H, Van Timmeren S, Isaacs R (2016) Exclusion netting delays and reduces Drosophila suzukii (Diptera: Drosophilidae) infestation in raspberries. J Econ Entomol. 109:2151–2158
Lechenet M, Dessaint F, Py G, Makowski D, Munier-Jolain N (2017) Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat Plants 3:17008
Lee WW, Shin TY, Bae SM, Woo SD (2015) Screening and evaluation of entomopathogenic fungi against the green peach aphid, Myzus persicae using multiple tools. J Asia-Pac Entomol. 18:607–615
Lefort F, Fleury D, Fleury I, Coutant C, Kuske S, Kehrli P, Maignet P (2014) Pathogenicity of entomopathogenic fungi to the green peach aphid Mmyzus persicae Ssulzer (Aphididae) and the european tarnished bug Llygus rugulipennis poppius (Miridae). Egyptian J Biol Pest Control 24:379–386
Lescourret F (2017) Toward a reduced use of pesticides in European farming systems: an introduction to the PURE project. Crop Prot 97:7–9
Leskey TC, Lee D, Short BD, Wright SE (2012) Impact of insecticides on the invasive Halyomorpha halys (Hemiptera: Pentatomidae): analysis of insecticide lethality. J Econ Entomol. 105:1726–1735. https://doi.org/10.1603/EC12265
doi: 10.1603/EC12265
Liang P, Tian Y-A, Biondi A, Desneux N, Gao X-W (2012) Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology 21:1889–1898
Liu Z, Williamson MS, Lansdell SJ, Denholm I, Han Z, Millar NS, Casida JE (2005) A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (Brown Planthopper). PNAS 102:8420–8425
Lowery DT, Smirle MJ, Foottit RG, Zurowski CL, Beers Peryea EH (2005) Baseline susceptibilities to imidacloprid for green apple aphid and spirea aphid (Homoptera: Aphididae) collected from apple in the Pacific Northwest. J Econ Entomol. 98:188–194. https://doi.org/10.1603/0022-0493-98.1.188
doi: 10.1603/0022-0493-98.1.188
Lu Z, Zhu P, Gurr GM, Zheng X, Chen G, Heong KL (2015) Rice Pest Management by Ecological Engineering: A Pioneering Attempt in China. In: Heong K, Cheng J, Escalada M (eds) Rice Planthoppers. Springer, Dordrecht, pp 161–178. https://doi.org/10.1007/978-94-017-9535-7_8 . Assessed 9 Aug 2017
Maalouly M, Franck P, Bouvier J, Toubon J, Lavigne C (2013) Codling moth parasitism is affected by semi-natural habitats and agricultural practices at orchard and landscape levels. Agric Ecosyst Environ. 169:33–42. https://doi.org/10.1016/j.agee.2013.02.008
doi: 10.1016/j.agee.2013.02.008
Macfadyen S, Hardie DC, Fagan L, Stefanova K, Perry KD, DeGraaf HE, Holloway J, Spafford H, Umina PA (2014) Reducing insecticide use in broad-acre grains production: an Australian study. PLoS One 9:e89119
Magalhaes LC, Walgenbach JF (2011) Life stage toxicity and residual activity of insecticides to codling moth and oriental fruit moth (Lepidoptera: Tortricidae). J Econ Entomol. 104:1950–1959
Malagnoux L, Capowiez Y, Rault M (2015) Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia. Environ Sci Pollut Res. 22:14116–14126. https://doi.org/10.1007/s11356-015-4520-9
doi: 10.1007/s11356-015-4520-9
Marchand PA (2015) Basic Substances: an approval opportunity for low concern natural products under EU pesticide regulation. Pest Manag Sci. 71:1197–1200. https://doi.org/10.1002/ps.3997
doi: 10.1002/ps.3997
Marchand PA (2016) Basic substances under EC 1107/2009 phytochemical regulation: experience with non-biocide and food products as biorationals. J Plant Protect Res. 56:312–318. https://doi.org/10.1515/jppr-2016-0041h
Marchand PA (2017) Basic substances under EU pesticide regulation: an opportunity for organic production? Org Farming 3:16–19. https://doi.org/10.12924/of2017.03010016
doi: 10.12924/of2017.03010016
Markó V, Blommers LHM, Bogya S, Helsen H (2008) Kaolin particle films suppress many apple pests, disrupt natural enemies and promote woolly apple aphid. J Appl Entomol. 132:26–35. https://doi.org/10.1111/j.1439-0418.2007.01233.x
doi: 10.1111/j.1439-0418.2007.01233.x
Matsumura M, Takeuchi H, Satoh M, Sanada-Morimura S, Otuka A, Watanabe T, van Thanh D (2008) Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in east and south-east Asia. Pest Manag Sci. 64:1115–1121
Matyjaszczyk E, Sobczak J, Szulc M (2015) Is the possibility of replacing seed dressings containing neonicotinoids with other means of protection viable in major Polish agricultural crops? J Plant Protect Res. 55:329–335
Mertz FP, Yao RC (1990) Saccharopolyspora spinosa sp. nov. isolated from soil collected in a sugar mill rum still. Int J Syst Bacteriol. 40:34–39. https://doi.org/10.1099/00207713-40-1-34
doi: 10.1099/00207713-40-1-34
Milosavljević I, Esser AD, Crowder DW (2016) Seasonal population dynamics of wireworms in wheat crops in the Pacific Northwestern United States. J Pest Sci. 90:77–86. https://doi.org/10.1007/s10340-016-0750-y
doi: 10.1007/s10340-016-0750-y
Minakuchi C, Inano Y, Shi XY, Song DL, Zhang YJ, Miura K (2013) Neonicotinoid resistance and cDNA sequences of nicotinic acetylcholine receptor subunits of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). Appl Entomol Zool. 48:507–513
Mineau P, Whiteside M (2013) Pesticide acute toxicity is a better correlate of U.S. grassland bird declines than agricultural intensification. PLoS One 8:e57457
Mitchell EAD, Mulhauser B, Mulot M, Mutabazi A, Glauser G, Aebi A (2017) A worldwide survey of neonicotinoids in honey. Science 358:109–111. https://doi.org/10.1126/science.aan3684
doi: 10.1126/science.aan3684
Monteiro LB, Lavigne C, Ricci B, Franck P, Toubon J-F, Sauphanor B (2013) Predation of codling moth eggs is affected by pest management practices at orchard and landscape levels. Agric Ecosyst Environ. 166:86–93. https://doi.org/10.1016/j.agee.2011.10.012
doi: 10.1016/j.agee.2011.10.012
Mota-Sánchez D, Wise JC, Poppen RV, Gut LJ, Hollingworth RM (2008) Resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity. Pest Manag Sci. 64:881–890. https://doi.org/10.1002/ps.1576
doi: 10.1002/ps.1576
Mottet C, Fontaine S, Caddoux L, Brazier C, Mahéo F, Simon J-C, Micoud A, Roy L (2016) Assessment of the dominance level of the R81T target resistance to two neonicotinoid insecticides in Myzus persicae (Hemiptera: Aphididae). J Econ Entomol. 109:2182–2189
Mruthunjayaswamy PV, Thiruvengadam J, Sushil Kumar J (2016) Resistance in Maconellicoccus hirsutus (Green) in India to selected insecticides and quantification of detoxifying enzymes imparting resistance. Crop Prot 89:116–122
Nagy C, Cross JV, Markó V (2013) Sugar feeding of the common black ant, Lasius niger (L.), as a possible indirect method for reducing aphid populations on apple by disturbing ant-aphid mutualism. Biol Control 65:24–36. https://doi.org/10.1016/j.biocontrol.2013.01.005
doi: 10.1016/j.biocontrol.2013.01.005
Nagy C, Cross JV, Markó V (2015) Can artificial nectaries outcompete aphids in ant-aphid mutualism? Applying artificial sugar sources for ants to support better biological control of rosy apple aphid, Dysaphis plantaginea Passerini in apple orchards. Crop Prot 77:127–138. https://doi.org/10.1016/j.cropro.2015.07.015
doi: 10.1016/j.cropro.2015.07.015
Nauen R, Bielza P, Denholm I, Gorman K (2008) Age-specific expression of resistance to a neonicotinoid insecticide in the whitefly Bemisia tabaci. Pest Manag Sci. 64:1106–1110
Nogueira Soares V, da Silva Almeida A, Deuner C, Jauer A, Madruga de Tunes L (2017) Neonicotinoid insecticide treatment improves physiological performance of melon and watermelon seeds. Afr J Agric Res 12:1678–1683
Panini M, Dradi D, Marani G, Butturini A, Mazzoni E (2014) Detecting the presence of target-site resistance to neonicotinoids and pyrethroids in Italian populations of Myzus persicae. Pest Manag Sci. 70:931–938
Pappas ML, Koveos DS (2011) Life-history traits of the predatory lacewing Dichochrysa prasina (Neuroptera: Chrysopidae): temperature-dependent effects when larvae feed on nymphs of Myzus persicae (Hemiptera: Aphididae). Ann Entomol Soc Am. 104:43–49. https://doi.org/10.1603/AN10036
doi: 10.1603/AN10036
Pavlova AK, Dahlmann M, Hauck M, Reineke A (2017) Laboratory bioassays with three different substrates to test the efficacy of insecticides against various stages of Drosophila suzukii (Diptera: Drosophilidae). J Insect Sci. 17:8. https://doi.org/10.1093/jisesa/iew100
doi: 10.1093/jisesa/iew100
Penvern S, Bellon S, Fauriel J, Sauphanor B (2010) Peach orchard protection strategies and aphid communities: towards an integrated agroecosystem approach. Crop Prot 29:1148–1156. https://doi.org/10.1016/j.cropro.2010.06.010
doi: 10.1016/j.cropro.2010.06.010
Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M et al (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res. 22:68–102
Pisa L, Goulson D, Yan EC, Gibbons D, Sánchez-Bayo F, Mitchell E, van der Sluijs J, MacQuarrie C, Giorio C, Long EY, McField M, Bijleveld van Lexmond M, Bonmatin JM (2017) An update of the World Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0341-3
Polajnar J, Eriksson A, Virant-Doberlet M, Mazzoni V (2016) Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci. 89:909–921. https://doi.org/10.1007/s10340-015-0726-3
doi: 10.1007/s10340-015-0726-3
Ponti L, Ricci C, Veronesi F, Torricelli R (2005) Natural hedges as an element of functional biodiversity in agroecosystems: the case of a central Italy vineyard. Bull Insectol. 58:19–23
Pozzebon A, Ahmad S, Tirello P, Lorenzon M, Duso C (2014) Does pollen availability mitigate the impact of pesticides on generalist predatory mites? BioControl 59:585–596
Pozzebon A, Loeb GM, Duso C (2015a) Role of supplemental foods and habitat structural complexity in persistence and coexistence of generalist predatory mites. Sci Rep. 5:14997. https://doi.org/10.1038/srep14997
doi: 10.1038/srep14997
Pozzebon A, Tirello P, Moret R, Pederiva M, Duso C (2015b) A fundamental step in IPM on grapevine: evaluating the side effects of pesticides on predatory mites. Insects 6:847–857. https://doi.org/10.3390/insects6040847
doi: 10.3390/insects6040847
Prabhaker N, Castle S, Henneberry TJ, Toscano NC (2005) Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res. 95:535–543
Puinean AM, Foster SP, Oliphant L, Denholm I, Field LM, Millar NS (2010) Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet. 6:e1000999
Raga A, Sato M (2011) Toxicity of neonicotinoids to Ceratitis capitata and Anastrepha fraterculus (Diptera: Tephritidae). J Plant Protect Res. 51:413–419
Rahman T, Broughton S (2016) Evaluation of thiacloprid and clothianidin (neonicotinoids) as alternative to fenthion (organophosphate) for control of Mediterranean fruit fly (Diptera: Tephritidae) in deciduous fruit orchards. Crop Prot 90:170–176
Rebach S, French DP (1996) Effects of Dimilin on the blue crab, Callinectes sapidus, in shallow-water habitats. Estuaries 19:279–287
Reissig WH (2003) Field and laboratory tests of new insecticides against the apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). J Econ Entomol. 96:1463–1472. https://doi.org/10.1603/0022-0493-96.5.1463
doi: 10.1603/0022-0493-96.5.1463
Reyes M, Franck P, Charmillot PJ, Ioriatti C, Olivares J, Pasqualini E, Sauphanor B (2007) Diversity of insecticide resistance mechanisms and spectrum in European populations of the codling moth, Cydia pomonella. Pest Manag Sci. 63:890–902
Ribeiro LP, Akhtar Y, Vendramim JD, Isman MB (2014) Comparative bioactivity of selected seed extracts from Brazilian Annona species and an acetogenin-based commercial bioinsecticide against Trichoplusia ni and Myzus persicae. Crop Prot 62 (Supplement C):100–106
Rieux R, Simon S, Defrance H (1999) Role of hedgerows and ground cover management on arthropod populations in pear orchards. Agric Ecosyst Environ. 73:119–127. https://doi.org/10.1016/S0167-8809(99)00021-3
doi: 10.1016/S0167-8809(99)00021-3
Rogers MA, Burkness EC, Hutchison WD (2016) Evaluation of high tunnels for management of Drosophila suzukii in fall-bearing red raspberries: potential for reducing insecticide use. J Pest Sci. 89:815–821
Romero A, Anderson TD (2016) High levels of resistance in the common bed bug, Cimex lectularius (Hemiptera: Cimicidae), to neonicotinoid insecticides. J Med Entomol. 53:727–731
Saeed R, Razaq M, Abbas N, Jan MT, Naveed M (2017) Toxicity and resistance of the cotton leaf hopper, Amrasca devastans (Distant) to neonicotinoid insecticides in Punjab, Pakistan. Crop Prot 93:143–147
Salis S, Testa C, Roncada P, Armorini S, Rubattu N, Ferrari A, Miniero R, Brambilla G (2017) Occurrence of imidacloprid, carbendazim, and other biocides in Italian house dust: potential relevance for intakes in children and pets. J Environ Sci Health B 52:699–709. https://doi.org/10.1080/03601234.2017.1331675
doi: 10.1080/03601234.2017.1331675
Santos MF, Santos RL, Tomé HVV, Barbosa WF, Martins GF, Guedes RNC, Oliveira EE (2016) Imidacloprid-mediated effects on survival and fertility of the Neotropical brown stink bug Euschistus heros. J Pest Sci. 89:231–240
Sauge M-H, Grechi I, Poëssel J-L (2010) Nitrogen fertilization effects on Myzus persicae aphid dynamics on peach: vegetative growth allocation or chemical defence? Entomol Exp Appl. 136:123–133. https://doi.org/10.1111/j.1570-7458.2010.01008.x
doi: 10.1111/j.1570-7458.2010.01008.x
Sauphanor B, Severac G, Maugin S, Toubon JF, Capowiez Y (2012) Exclusion netting may alter reproduction of the codling moth (Cydia pomonella) and prevent associated fruit damage to apple orchards. Entomol Exp Appl. 145:134–142. https://doi.org/10.1111/j.1570-7458.2012.01320.x
doi: 10.1111/j.1570-7458.2012.01320.x
Saussure S, Plantegenest M, Thibord J-B, Larruodè P, Poggi S (2015) Management of wireworm damage in maize fields using new, landscape-scale strategies. Agron Sustain Dev. 35:793–802. https://doi.org/10.1007/s13593-014-0279-5
Schmitt A, Bisutti IL, Ladurner E, Benuzzi M, Sauphanor B, Kienzle J, Zingg D, Undorf-Spahn K, Fritsch E, Huber J, Jehle JA (2013) The occurrence and distribution of resistance of codling moth to Cydia pomonella granulovirus in Europe. J Appl Entomol. 137:641–649. https://doi.org/10.1111/jen.12046
doi: 10.1111/jen.12046
Scott JG, Duhig M, Hamlyn J, Norman R (2014) Environmental contributions to autism: explaining the rise in incidence of autistic spectrum disorders. J Environ Immunol Toxicol 1(2):75–79. https://eprints.qut.edu.au/84191/
Seagraves MP, Lundgren JG (2012) Effects of neonicotinoid seed treatments on soybean aphid and its natural enemies. J Pest Sci. 85:125–132
Sgolastra F, Porrini C, Maini S, Bortolotti L, Medrzycki P, Mutinelli F, Lodesani M (2017) Healthy honey bees and sustainable maize production: why not? Bull Insectol. 70:156–160
Sharon R, Zahavi T, Sokolsky T, Sofer-Arad C, Tomer M, Kedoshim R, Harari AR (2016) Mating disruption method against the vine mealybug, Planococcus ficus: effect of sequential treatment on infested vines. Entomol Exp Appl. 161:65–69
Shawer R, Tonina L, Tirello P, Duso C, Mori N (2018) Laboratory and field trials to identify effective chemical control strategies for integrated management of Drosophila suzukii in European cherry orchards. Crop Prot 103:73–80
Shearer PW, Frecon JL (2002) Managing Brachycaudis persicae (Homoptera: Aphididae) during peach orchard establishment. J Econ Entomol. 95:368–371
Shi X, Jiang L, Wang H, Qiao K, Wang D, Wang K (2011) Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid, Aphis gossypii. Pest Manag Sci. 67:1528–1533
Simon-Delso N, Amaral-Rogers V, Belzunces L, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons D, Giorio C, Girolami V et al (2015) Systemic insecticides (neonicotinoids and fipronil); trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22:5–34. https://doi.org/10.1007/s11356-014-3470-y
doi: 10.1007/s11356-014-3470-y
Solomon MG, Cranham JE, Easterbrook MA, Fitzgerald JD (1989) Control of the pear psyllid, Cacopsylla pyricola, in south east England by predators and pesticides. Crop Prot 8:197–205. https://doi.org/10.1016/0261-2194(89)90027-6
doi: 10.1016/0261-2194(89)90027-6
Solomon MG, Cross JV, Fitzgerald JD, Campbell CAM, Jolly RL, Olszak RW, Niemczyk E, Vogt H (2000) Biocontrol of pests of apples and pears in northern and central Europe—3. Predators. Biocontrol Sci Technol. 10:91–128. https://doi.org/10.1080/09583150029260
doi: 10.1080/09583150029260
Souliotis C, Moschos T (2008) Effectiveness of some pesticides against Cacopsylla pyricola and impact on its predator Anthocoris nemoralis in pear-orchards Bull. Insectol. 61:25–30
Spangenberg JH, Douguet JM, Settele J, Heong KL (2015) Escaping the lock-in of continuous insecticide spraying in rice: developing an integrated ecological and socio-political DPSIR analysis. Ecol Model. 295:188–195
Stenberg JA (2017) A conceptual framework for integrated pest management. Trends Plant Sci. 22:759–769
Szendrei Z, Grafius E, Byrne A, Ziegler A (2012) Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Manag Sci. 68:941–946
Tacoli F, Pavan F, Cargnus E, Tilatti E, Pozzebon A, Zandigiacomo P (2017) Efficacy and mode of action of kaolin in the control of Empoasca vitis and Zygina rhamni (Hemiptera: Cicadellidae) in Vineyards. J Econ Entomol. 110:1164–1178
Tamindžić G, Nikolić Z, Milošević D, Ignjatov M (2016) Field & vegetable crops research. Ratarstvo i povrtarstvo 53:90–95
Thany SH (2010) Neonicotinoid insecticides. Historical evolution and resistance mechanisms. Adv. Exp Med Biol. 683:75–83
Tirello P, Pozzebon A, Duso C (2013) The effect of insecticides on the non-target predatory mite Kampimodromus aberrans: laboratory studies. Chemosphere 93:1139–1144
Tiwari S, Mann RS, Rogers ME, Stelinski LL (2011) Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Manag Sci. 67:1258–1268
Toda S, Hirata K, Yamamoto A, Matsuura A (2017) Molecular diagnostics of the R81T mutation on the D-loop region of the β1 subunit of the nicotinic acetylcholine receptor gene conferring resistance to neonicotinoids in the cotton aphid, Aphis gossypii (Hemiptera: Aphididae). Appl Entomol Zool. 52:147–151
Trimble RM (1993) Efficacy of mating disruption for controlling the grape berry moth, Endopiza viteana (Clemens) (Lepidoptera: Tortricidae), a case study over three consecutive growing seasons. Can Entomol. 125:1–9. https://doi.org/10.4039/Ent1251-1
doi: 10.4039/Ent1251-1
Unruh TR, Lacey LA (2001) Control of codling moth, Cydia pomonella (Lepidoptera: Tortricidae), with Steinernema carpocapsae: effects of supplemental wetting and pupation site on infection rate. Biol Control 20:48–56. https://doi.org/10.1006/bcon.2000.0873
doi: 10.1006/bcon.2000.0873
van der Sluijs JP, Amaral-Rogers V, Belzunces LP, Bijleveld van Lexmond M, Bonmatin JM, Chagnon M, Downs CA, Furlan L, Gibbons DW, Giorio C et al (2015) Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ Sci Pollut Res 22:148–154
Van Timmeren S, Wise JC, VanderVoort C, Isaacs R (2011) Comparison of foliar and soil formulations of neonicotinoid insecticides for control of potato leafhopper, Empoasca fabae (Homoptera: Cicadellidae), in wine grapes. Pest Manag Sci. 67:560–567
Vassiliou VA (2011) Effectiveness of insecticides in controlling the first and second generations of the Lobesia botrana (Lepidoptera: Tortricidae) in table grapes. J Econ Entomol. 104:580–585. https://doi.org/10.1603/EC10343
doi: 10.1603/EC10343
Voudouris CC, Kati AN, Sadikoglou E, Williamson M, Skouras PJ, Dimotsiou O, Georgiou S, Fenton B, Skavdis G, Margaritopoulos JT (2016) Insecticide resistance status of Myzus persicae in Greece: long-term surveys and new diagnostics for resistance mechanisms. Pest Manag Sci. 72:671–683
Vrancken K, Trekels H, Thys T, Beliën T, Bylemans D, Demaeght P, Van Leeuwen T, De Clercq P (2015) The presence of beneficial arthropods in organic versus IPM pear orchards and their ability to predate pear suckers (Cacopsylla pyri). Acta Hortic. 1094:427–429. https://doi.org/10.17660/ActaHortic.2015.1094.55
doi: 10.17660/ActaHortic.2015.1094.55
Wallingford AK, Fuchs MF, Martinson T, Hesler S, Loeb GM (2015) Slowing the spread of grapevine leafroll-associated viruses in commercial vineyards with insecticide control of the vector, Pseudococcus maritimus (hemiptera: pseudococcidae). J Insect Sci. 15:112. https://doi.org/10.1093/jisesa/iev094
doi: 10.1093/jisesa/iev094
Walton VM, Daane KM, Bentley WJ, Millar JG, Larsen TE, Malakar-Kuenen R (2006) Pheromone-based mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in California vineyards. J Econ Entomol 99:1280–1290. https://doi.org/10.1093/jisesa/ieu006
doi: 10.1093/jisesa/ieu006
Walton VM, Daane KM, Addison P (2012) Biological control of arthropods and its application in vineyards. In: Bostanian NJ, Vincent C, Isaacs R (eds) Arthropod Management in Vineyards: Pests, Approaches, and Future Directions. Springer, Netherlands, pp 91–117
Wan N-F, Ji X-Y, Gu X-J, Jiang J-X, Wu J-H, Li B (2014) Ecological engineering of ground cover vegetation promotes biocontrol services in peach orchards. Ecol. Eng. 64:62–65. https://doi.org/10.1016/j.ecoleng.2013.12.033
doi: 10.1016/j.ecoleng.2013.12.033
Wang ZH, Gong YJ, Jin GH, Li BY, Chen JC, Kang ZJ, Zhu L, Gao YL, Reitz S, Wei SJ (2016a) Field-evolved resistance to insecticides in the invasive western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in China. Pest Manag Sci. 72:1440–1444
Wang NX, Watso GB, Loso MR, Sparks TC (2016b) Molecular modeling of sulfoxaflor and neonicotinoid binding in insect nicotinic acetylcholine receptors: impact of the Myzus β1 R81T mutation. Pest Manag Sci. 72:1467–1474
Wang X, Anadón A, Qinghua W, Qiao F, Ares I, Martínez-Larrañaga M-R, Yuan Z, Martínez M-A (2018)Mechanism of neonicotinoid toxicity: Impact on oxidative stress and metabolism. Annu Rev Pharmacol Toxicol 58:(1):471–507. https://doi.org/10.1146/annurev-pharmtox-010617-052429 . Assessed 9 Oct 2017
Wei Q, Mu XC, Yu HY, Niu CD, Wang LX, Zheng C, Chen Z, Gao CF (2017) Susceptibility of Empoasca vitis (Hemiptera: Cicadellidae) populations from the main tea-growing regions of China to thirteen insecticides. Crop Prot 96:204–210
Wilson H, Miles AF, Daane KM, Altieri MA (2015) Vineyard proximity to riparian habitat influences Western grape leafhopper (Erythroneura elegantula Osborn) populations. Agric Ecosyst Environ. 211:43–50. https://doi.org/10.1016/j.agee.2015.04.021
doi: 10.1016/j.agee.2015.04.021
Wise JC, Vanderpoppen R, Vandervoort C, O’Donnell C, Isaacs R (2015) Curative activity contributes to control of spotted-wing drosophila (Diptera: Drosophilidae) and blueberry maggot (Diptera: Tephritidae) in highbush blueberry. Can Entomol. 147:109–117
Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol. 53:503–522. https://doi.org/10.1146/annurev.ento.53.103106.093323
doi: 10.1146/annurev.ento.53.103106.093323
Wu G, Jiang S, Miyata T (2004) Effects of synergists on toxicity of six insecticides in parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae). J Econ Entomol. 97:2057–2066
Wu G, Miyata T, Kang CY, Xie LH (2007) Insecticide toxicity and synergism by enzyme inhibitors in 18 species of pest insect and natural enemies in crucifer vegetable crops. Pest Manag Sci 63:500–510
Yang XQ, Wu ZW, Zhang YL, Barros-Parada W (2016) Toxicity of six insecticides on codling moth (Lepidoptera: Tortricidae) and effect on expression of detoxification genes. J Econ Entomol 109:320–326
Yuan L, Wang S, Zhou J, Du Y, Zhang Y, Wang J (2012) Status of insecticide resistance and associated mutations in Q-biotype of whitefly, Bemisia tabaci, from eastern China. Crop Prot 31:67–71
Zanolli P, Pavan F (2011) Autumnal emergence of Anagrus wasps, egg parasitoids of Empoasca vitis, from grapevine leaves and their migration towards brambles. Agric Forest Entomol 13:423–433. https://doi.org/10.1111/j.1461-9563.2011.00546.x
doi: 10.1111/j.1461-9563.2011.00546.x
Žežlina I, Škvarč A, Bohinc T, Trdan S (2013) Testing the efficacy of single applications of five insecticides against Scaphoideus titanus on common grapevines. Int J Pest Manag 59:1–9
Zhang X, Liu X, Zhu F, Li J, You H, Lu P (2014) Field evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stal) in China. Crop Prot 58:61–66
Zhao GY, Liu W, Brown JM, Knowles CO (1995) Insecticide resistance in-field and laboratory strains of western flower thrips (Thysanoptera, Thripidae). J Econ Entomol 88:1164–1170

Auteurs

Lorenzo Furlan (L)

Veneto Agricoltura, Legnaro (PD), Italy.

Alberto Pozzebon (A)

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy.

Carlo Duso (C)

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy.

Noa Simon-Delso (N)

Beekeeping Research and Information Centre, Louvain la Neuve, Belgium.

Francisco Sánchez-Bayo (F)

School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia.

Patrice A Marchand (PA)

Institut Technique de l'Agriculture Biologique (ITAB), 149 Rue de Bercy, 75595, Paris, France.

Filippo Codato (F)

Condifesa Veneto, Associazione regionale dei ccnsorzi di difesa del Veneto, Via F.S. Orologio 6, 35129, Padova (PD), Italy.

Maarten Bijleveld van Lexmond (M)

Task Force on Systemic Pesticides, 46 Pertuis-du-Sault, 2000, Neuchâtel, Switzerland.

Jean-Marc Bonmatin (JM)

Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071, Orléans, France. bonmatin@cnrs-orleans.fr.

Articles similaires

Animals Hemiptera Insect Proteins Phylogeny Insecticides
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH