Decoding the genomic terrain: functional insights into 14 chemosensory proteins in whitefly Bemisia tabaci Asia II-1.
Bemisia tabaci Asia II-1
Chemosensory proteins
Insecticide interactions
RNAi
Spatial expression
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
31
03
2024
accepted:
28
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Genome-wide analysis of Bemisia tabaci Asia II-1 unravelled for the first-time full-length sequences of 14 chemosensory proteins (CSPs), their exon-intron boundaries, insertion sites of retrotransposons, and clustering patterns on chromosomes. All the CSPs sans CSP6 have an N-terminal signal peptide. The presence of OS-D superfamily and PhBP domains in different CSPs suggests their roles in chemosensory signal transduction and pheromone binding. Motif analysis reveals the conservation and cohesiveness of CSPs in hemiptera. The phylogenetic analysis uncovers the evolutionary lineages of Hemipteran CSPs. RT-qPCR analysis showed spatial expression of CSPs in different body tissues of B. tabaci adults. In-silico docking analysis showed high-affinity binding of CSP 1 and 5 with two insecticides, imidacloprid and fipronil, with energy values ranging from - 5.8 to -9.3 kcal/mol, along with the details of interacting aminoacidic residues in the hydrophobic binding pockets of these two CSPs. Further functional validation was done through insecticide bioassays and RNAi. This study provides novel insights into the genomic architecture of CSPs in B. tabaci Asia II-1, and functional characterisation suggests that CSP1 and 5 genes may have indirect roles in insecticide resistance. It lays the foundation for further research on developing new control strategies for B. tabaci.
Identifiants
pubmed: 39482332
doi: 10.1038/s41598-024-77998-z
pii: 10.1038/s41598-024-77998-z
doi:
Substances chimiques
Insect Proteins
0
Insecticides
0
Neonicotinoids
0
imidacloprid
3BN7M937V8
Nitro Compounds
0
fipronil
QGH063955F
Pyrazoles
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26252Informations de copyright
© 2024. The Author(s).
Références
Vogt, R. G. & Riddiford, L. M. Pheromone binding and inactivation by moth antennae. Nature. 293, 161–163 (1981).
pubmed: 18074618
doi: 10.1038/293161a0
Nomura, A., Kawasaki, K., Kubo, T. & Natori, S. Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int. J. Dev. Biol. 36, 391–398 (1992).
pubmed: 1445782
McKenna, M. P., Hekmat-Scafe, D. S., Gaines, P. & Carlson, J. R. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J. Biol. Chem. 269, 16340–16347 (1994).
pubmed: 8206941
doi: 10.1016/S0021-9258(17)34013-9
Gong, D. P. et al. Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 37, 266–277 (2007).
pubmed: 17296501
doi: 10.1016/j.ibmb.2006.11.012
Angeli, S., Ceron, F., Scaloni, A., Monti, M. & Pelosi, P. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca Gregaria. Eur. J. Biochem. 262, 745–754 (1999).
pubmed: 10411636
doi: 10.1046/j.1432-1327.1999.00438.x
Bos, J. I. et al. A. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet. 6, e1001216 (2010).
pubmed: 21124944
pmcid: 2987835
doi: 10.1371/journal.pgen.1001216
Xuan, N. et al. Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci. 22, 203–219 (2015).
pubmed: 24677614
doi: 10.1111/1744-7917.12116
Liu, G. X. et al. Biotype characterization, developmental profiling, insecticide response, and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS ONE. 11, e0154706 (2016).
pubmed: 27167733
pmcid: 4864240
doi: 10.1371/journal.pone.0154706
Liu, G. et al. Comprehensive history of CSP genes: evolution, phylogenetic distribution and functions. Genes. 11, 413 (2020).
pubmed: 32290210
pmcid: 7230875
doi: 10.3390/genes11040413
Picimbon, J. F. Olfactory Concepts of Insect Control-Alternative to Insecticides (Springer, 2019).
Liu, G., Arnaud, P., Offmann, B. & Picimbon, J. F. Genotyping and bio-sensing chemosensory proteins in insects. Sensors. 17 (8), 1801 (2017).
pubmed: 28777348
pmcid: 5579523
doi: 10.3390/s17081801
Lin, X. D., Jiang, Y., Zhang, L. & Cai, Y. Effects of insecticides chlorpyrifos, emamectin benzoate and fipronil on Spodoptera litura might be mediated by OBPs and CSPs. Bull. Entomol. Res. 108, 658–666 (2018).
pubmed: 29198202
doi: 10.1017/S0007485317001195
Xu, H. et al. Chemosensory Proteins Are Associated with Thiamethoxam and Spirotetramat Tolerance in Aphis gossypii Glover. Int. J. Mol. Sci. 23, 2356. https://doi.org/10.3390/ijms23042356 (2022).
doi: 10.3390/ijms23042356
pubmed: 35216472
pmcid: 8874399
Picimbon, J. F. A new view of genetic mutations. Australasian Med. J. 10, 701–715 (2017).
doi: 10.21767/AMJ.2017.3096
Kanakala, S. & Ghanim, M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE 14(3), e0213946 (2019).
pubmed: 30889213
pmcid: 6424426
doi: 10.1371/journal.pone.0213946
Naveen, N. C., Chaubey, R., Kumar, D., Rebijith, K. B., Rajagopal, R., Subrahmanyam, B., & Subramanian, S. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Sci. Rep. 7(1), 0634 (2017).
Gouda, M. R., Rajna, S., Gambhir, S. & Subramanian, S. Unravelling genetic diversity of whitefly species on different host plants from New Delhi. J. Environ. Biol. 45, 259–267 (2024).
Wang, R. et al. Identification and expression profile analysis of odorant binding protein and chemosensory protein genes in Bemisia tabaci MED by head transcriptome. PLoS ONE. 12 (2), e0171739 (2017).
pubmed: 28166541
pmcid: 5293548
doi: 10.1371/journal.pone.0171739
Zeng, Y. et al. Genome-wide analysis of odorant-binding proteins and chemosensory proteins in the sweet potato whitefly, Bemisia tabaci. Insect Sci. 26 (4), 620–634 (2019).
pubmed: 29441682
doi: 10.1111/1744-7917.12576
Wang, R., Zhang, X., Li, H., Guo, X. & Luo, C. Identification and expression profiling of five chemosensory protein genes in the whitefly MED: Bemisia tabaci. J. Asia. Pac. Entomol. 19, 195–201 (2016).
doi: 10.1016/j.aspen.2016.01.005
Li, F., Dewer, Y., Li, D., Qu, C. & Luo, C. Functional and evolutionary characterization of chemosensory protein CSP2 in the whitefly, Bemisia tabaci. Pest Manag. Sci. 77 (1), 378–388 (2021).
pubmed: 32741104
doi: 10.1002/ps.6027
Li, F. et al. Discrimination of Oviposition Deterrent Volatile β-Ionone by Odorant-Binding Proteins 1 and 4 in the Whitefly Bemisia tabaci. Biomolecules. 9 (10), 563 (2019).
pubmed: 31623354
pmcid: 6843521
doi: 10.3390/biom9100563
Shi, X. B. et al. Silencing of odorant-binding protein gene OBP3 using RNA interference reduced Virus Transmission of Tomato Chlorosis Virus. Int. J. Mol. Sci. 20, 4969 (2019).
pubmed: 31600869
pmcid: 6834158
doi: 10.3390/ijms20204969
Zeng, Y. et al. A chemosensory protein BtabCSP11 mediates reproduction in Bemisia tabaci. Front. Physiol. 11, 709 (2020).
pubmed: 32695020
pmcid: 7338578
doi: 10.3389/fphys.2020.00709
Letunic, L., Doerks, T. & Bork, P. SMART: recent updates, new developments, and status in 2015. Nucleic Acids Res. 43, 257–260 (2015).
doi: 10.1093/nar/gku949
Nielsen, H., Teufel, F., Brunak, S. & von Heijne, G. SignalP: The evolution of a web server. In Protein Bioinformatics 331–367Springer US, (2024).
Hu, B. et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 31, 1296–1297 (2015).
pubmed: 25504850
doi: 10.1093/bioinformatics/btu817
Chao, J. T. et al. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Yi Chuan. 37, 91–97 (2015).
pubmed: 25608819
Gouda, M. R., Naga, K. C., Nebapure, S. M. & Subramanian, S. Unravelling the genomic landscape reveals the presence of six novel odorant-binding proteins in whitefly Bemisia tabaci Asia II-1. Int. J. Biol. Macromol. 279, 135140 (2024).
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
pubmed: 25950237
pmcid: 5298202
doi: 10.1038/nprot.2015.053
Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).
pubmed: 29788355
pmcid: 6030848
doi: 10.1093/nar/gky427
Zhou, X. et al. I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction. Nat. Protoc. 17, 2326–2353 (2022).
pubmed: 35931779
doi: 10.1038/s41596-022-00728-0
Wiederstein, M. & Sippl, M. J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35, W407–W410 (2007).
pubmed: 17517781
pmcid: 1933241
doi: 10.1093/nar/gkm290
Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 27, 343–350 (2011).
pubmed: 21134891
doi: 10.1093/bioinformatics/btq662
Gouda, M. R. & Subramanian, S. Variations in the expression of odorant binding and chemosensory proteins in the developmental stages of whitefly Bemisia tabaci Asia II-1. Sci. Rep. 14, 15046 (2024).
pubmed: 38951601
pmcid: 11217293
doi: 10.1038/s41598-024-65785-9
Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in bipolymers. 28-36 (1994).
Zhang, D. et al. An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348–355 (2020).
pubmed: 31599058
doi: 10.1111/1755-0998.13096
Liu, L. et al. Molecular and functional characterization of pheromone binding protein 2 from Cyrtotrachelus buqueti (Coleoptera: Curculionidae). Int. J. Mol. Sci. 24, 16925 (2023).
pubmed: 38069247
pmcid: 10706763
doi: 10.3390/ijms242316925
He, Z. et al. Evolview v2, an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 44, W236–W241 (2016).
pubmed: 27131786
pmcid: 4987921
doi: 10.1093/nar/gkw370
Hall, T. BioEdit version 7.0.0. Distributed by the author, website: (2004). www.mbio.ncsu.edu/BioEdit/bioedit.html . Accessed on : 30-10-2024
Rozas, J. et al. Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
pubmed: 29029172
doi: 10.1093/molbev/msx248
Muhire, B. M., Varsani, A. & Martin, D. P. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE. 9, e108277 (2014).
pubmed: 25259891
pmcid: 4178126
doi: 10.1371/journal.pone.0108277
Li, R. M. et al. Reference gene selection for qRT-PCR analysis in the sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE 8(1), e53006 (2013).
pubmed: 23308130
pmcid: 3540095
doi: 10.1371/journal.pone.0053006
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29 (9), e45 (2001).
pubmed: 11328886
pmcid: 55695
doi: 10.1093/nar/29.9.e45
Simon, P. Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics. 19 (11), 1439–1440 (2003).
pubmed: 12874059
doi: 10.1093/bioinformatics/btg157
IBM Corp. IBM SPSS Statistics for Windows, Version 25.0. IBM Corp. (2017).
Kelageri, S. S. Toxicity variations of insecticides against cotton whitefly Bemisia tabaci (Gennadius) (Doctoral dissertation, Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, (2022).
Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 61, 3891–3898 (2021).
pubmed: 34278794
pmcid: 10683950
doi: 10.1021/acs.jcim.1c00203
DeLano, W. L. PyMOL: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40, 82–92 (2002).
Seeliger, D. & de Groot, B. L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 24, 417–422 (2010).
pubmed: 20401516
pmcid: 2881210
doi: 10.1007/s10822-010-9352-6
Narramore, S., Stevenson, C. E. M., Maxwell, A., Lawson, D. M. & Fishwick, C. W. G. New insights into the binding mode of pyridine-3-carboxamide inhibitors of E. Coli DNA gyrase. Bioorg. Med. Chem. 27 (16), 3546–3550 (2019).
pubmed: 31257079
doi: 10.1016/j.bmc.2019.06.015
Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).
pubmed: 21919503
doi: 10.1021/ci200227u
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Gouda, M. N. R., D, S., Gaikwad, K., Kumar, A., Subramanian, S. Elucidationof ejaculatory bulb proteins in Bemisia tabaci Asia-1and Asia II-1 and confirmation of their mating transfer via RNAi. Mol. Biol. Rep. 51, 861 (2024).
doi: 10.1007/s11033-024-09816-8
Lartigue, A. et al. X-ray structure and ligand binding study of a moth chemosensory protein. J. Biol. Chem. 277, 32094–32098 (2002).
pubmed: 12068017
doi: 10.1074/jbc.M204371200
Vieira, F. G. & Rozas, J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda, Origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 3, 476–490 (2011).
pubmed: 21527792
pmcid: 3134979
doi: 10.1093/gbe/evr033
Picimbon, J. F. RNA mutations in the moth pheromone gland. RNA Dis. 1, 1–6 (2014).
Wanner, K. et al. Analysis of the insect OS-D-like gene family. J. Chem. Ecol. 30, 889–911 (2004).
pubmed: 15274438
doi: 10.1023/B:JOEC.0000028457.51147.d4
Rondon, J. J. et al. Evolution of the odorant-binding protein gene family in Drosophila. Front. Ecol. Evol. 10, 957247 (2022).
doi: 10.3389/fevo.2022.957247
Li, M. Y. et al. Genome-wide analysis of chemosensory protein genes in the small white butterfly Pieris rapae (Lepidoptera, Pieridae). J. Asia. Pac. Entomol. 23 (3), 772–780 (2020).
doi: 10.1016/j.aspen.2020.07.005
Jacquemin, G., Jansen, S., Lofstedt, C. & Picimbon, J. F. Intron of the chemosensory genes from Bombyx mori displays a specific structure of short interspersed element. Direct GenBank Submiss. AAV34688 (2004).
Wessler, S. R., Bureau, T. E. & White, S. E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5, 814–821 (1995).
pubmed: 8745082
doi: 10.1016/0959-437X(95)80016-X
Casacuberta, J. M. & Santiago, N. Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene. 311, 1–11 (2003).
pubmed: 12853133
doi: 10.1016/S0378-1119(03)00557-2
Zidi, M., Klai, K., Confais, J., Chénais, B., Caruso, A., Denis, F., … Casse, N. Genome-Wide Screening of Transposable Elements in the Whitefly: Bemisia tabaci (Hemiptera, Aleyrodidae):Revealed Insertions with Potential Insecticide Resistance Implications. Insects. 13, 396 (2022).
Finnegan, D. J. & Retrotransposons Curr. Biol. 22, 432–437 (2012).
doi: 10.1016/j.cub.2012.04.025
Yin, L. T. & Maschwitz, U. Sexual pheromone in the Green House Whitefly Trialeurodes vaporariorum Westw. Z. für Angewandte Entomologie. 95, 439–446 (1983).
doi: 10.1111/j.1439-0418.1983.tb02665.x
Rebholz, Z. et al. Ancient origin and conserved gene function in terpene pheromone and defense evolution of stink bugs and hemipteran insects. Insect Biochem. Mol. Biol. 152, 103879 (2023).
pubmed: 36470318
doi: 10.1016/j.ibmb.2022.103879
Liu, N. Y. et al. Two subclasses of odorant-binding proteins in Spodoptera exigua display structural conservation and functional divergence. Insect Mol. Biol. 24, 167–182 (2015).
pubmed: 25345813
doi: 10.1111/imb.12143
Zhu, J., Iovinella, I., Dani, F. R., Pelosi, P. & Wang, G. Chemosensory proteins, a versatile binding family. Olfactory Concepts Insect Control-Alternative Insecticides. 2, 147–169 (2019).
doi: 10.1007/978-3-030-05165-5_6
Owji, H., Nezafat, N., Negahdaripour, M., Hajiebrahimi, A. & Ghasemi, Y. A comprehensive review of signal peptides, structure, roles, and applications. Eur. J. Cell Biol. 97, 422–441 (2018).
pubmed: 29958716
doi: 10.1016/j.ejcb.2018.06.003
Szabady, R. L., Peterson, J. H., Skillman, K. M. & Bernstein, H. D. An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc. Natl. Acad. Sci. 102, 221–226 (2005).
Liu, G. X., Ma, H. M., Xie, H. Y., Xuan, N. & Picimbon, J. F. Sequence variation of Bemisia tabaci Chemosensory protein 2 in cryptic species B and Q: new DNA markers for whitefly recognition. Gene. 576, 284–291 (2016).
pubmed: 26481237
doi: 10.1016/j.gene.2015.10.036
Picimbon, J. F. Biochemistry and evolution of OBP and CSP proteins. In Insect Pheromone Biochemistry and Molecular Biology 539–566 (Academic, (2003).
Kulmuni, J., Wurm, Y. & Pamilo, P. Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates. Heredity. 110, 538–547 (2013).
pubmed: 23403962
pmcid: 3656642
doi: 10.1038/hdy.2012.122
McKenzie, S. K., Oxley, P. R. & Kronauer, D. J. Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genom. 15, 1–14 (2014).
doi: 10.1186/1471-2164-15-718
Strobel, M. C. & Abelson, J. Intron mutations affect splicing of Saccharomyces cerevisiae SUP53 precursor tRNA. Mol. Cell. Biol. 6, 2674–2683 (1986).
pubmed: 3537725
pmcid: 367824
Epstein, D. J., Vogan, K. J., Trasler, D. G. & Gros, P. A mutation within intron 3 of the Pax-3 gene produces aberrantly spliced mRNA transcripts in the splotch (sp) mouse mutant. Proc. Natl. Acad. Sci. U.S.A. 90, 532–536 (1993).
pubmed: 8421686
pmcid: 45697
doi: 10.1073/pnas.90.2.532
Rajna, S., Mahapatro, G., Subramanian, S. & Chander, S. Determination of insecticide resistance in cotton whitefly in North India. Indian J. Agricultural Sci. 94, 404–409 (2024).
doi: 10.56093/ijas.v94i4.143044
Lin, X. D., Mao, Y. W. & Zhang, L. Binding properties of four antennae-expressed chemosensory proteins (CSPs) with insecticides indicates the adaption of Spodoptera litura to environment. Pestic. Biochem. Physiol. 146, 43–51 (2018).
pubmed: 29626991
doi: 10.1016/j.pestbp.2018.02.011
Li, F., Venthur, H., Wang, S., Homem, R. A. & Zhou, J. J. Evidence for the involvement of the chemosensory protein AgosCSP5 in resistance to insecticides in the cotton aphid, Aphis gossypii. Insects. 12 (4), 335 (2021).
pubmed: 33918564
pmcid: 8070451
doi: 10.3390/insects12040335
Li, H. L. et al. Sublethal doses of neonicotinoid imidacloprid can interact with honeybee chemosensory protein 1 (CSP1) and inhibit its function. Biochem. Biophys. Res. Commun. 486, 391–397 (2017).
pubmed: 28315331
doi: 10.1016/j.bbrc.2017.03.051
Xuan, N. et al. Molecular evidence of RNA editing in Bombyx chemosensory protein family. PLoS ONE. 9, e86932 (2014).
pubmed: 24551045
pmcid: 3923736
doi: 10.1371/journal.pone.0086932