Comprehensive comparative analysis and development of molecular markers for Lasianthus species based on complete chloroplast genome sequences.
Lasianthus
Chloroplast genome
Phylogenetic relationship
Rubiaceae
Species identification
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
31 Dec 2024
31 Dec 2024
Historique:
received:
19
10
2023
accepted:
05
07
2024
medline:
17
9
2024
pubmed:
17
9
2024
entrez:
16
9
2024
Statut:
epublish
Résumé
Lasianthus species are widely used in traditional Chinese folk medicine with high medicinal value. However, source materials and herbarium specimens are often misidentified due to morphological characteristics and commonly used DNA barcode fragments are not sufficient for accurately identifying Lasianthus species. To improve the molecular methods for distinguishing among Lasianthus species, we report the complete chloroplast (CP) genomes of Lasianthus attenuatus, Lasianthus henryi, Lasianthus hookeri, Lasianthus sikkimensis, obtained via high-throughput Illumina sequencing. These showed CP genomes size of 160164-160246 bp and a typical quadripartite structure, including a large single-copy region (86675-86848 bp), a small single-copy region (17177-17326 bp), and a pair of inverted repeats (28089-28135 bp). As a whole, the gene order, GC content and IR/SC boundary structure were remarkably similar among of the four Lasianthus CP genomes, the partial gene length and IR, LSC and SSC regions length are still different. The average GC content of the CP genomes was 36.71-36.75%, and a total of 129 genes were detected, including 83 different protein-coding genes, 8 different rRNA genes and 38 different tRNA genes. Furthermore, we compared our 4 complete CP genomes data with publicly available CP genome data from six other Lasianthus species, and we initially screened eleven highly variable region fragments were initially screened. We then evaluated the identification efficiency of eleven highly variable region fragments and 5 regular barcode fragments. Ultimately, we found that the optimal combination fragment' ITS2 + psaI-ycf4' could authenticated the Lasianthus species well. Additionally, the results of genome comparison of Rubiaceae species showed that the coding region is more conservative than the non-coding region, and the ycf1 gene shows the most significant variation. Finally, 49 species of CP genome sequences belonging to 16 genera of the Rubiaceae family were used to construct phylogenetic trees. Our research is the first to analyze the chloroplast genomes of four species of Lasianthus in detail and we ultimately determined that the combination fragment' ITS2 + psaI-ycf4' is the optimal barcode combination for identifying the genus of Lasianthus. Meanwhile, we gathered the available CP genome sequences from the Rubiaceae and used them to construct the most comprehensive phylogenetic tree for the Rubiaceae family. These investigations provide an important reference point for further studies in the species identification, genetic diversity, and phylogenetic analyses of Rubiaceae species.
Sections du résumé
BACKGROUND
BACKGROUND
Lasianthus species are widely used in traditional Chinese folk medicine with high medicinal value. However, source materials and herbarium specimens are often misidentified due to morphological characteristics and commonly used DNA barcode fragments are not sufficient for accurately identifying Lasianthus species. To improve the molecular methods for distinguishing among Lasianthus species, we report the complete chloroplast (CP) genomes of Lasianthus attenuatus, Lasianthus henryi, Lasianthus hookeri, Lasianthus sikkimensis, obtained via high-throughput Illumina sequencing.
RESULTS
RESULTS
These showed CP genomes size of 160164-160246 bp and a typical quadripartite structure, including a large single-copy region (86675-86848 bp), a small single-copy region (17177-17326 bp), and a pair of inverted repeats (28089-28135 bp). As a whole, the gene order, GC content and IR/SC boundary structure were remarkably similar among of the four Lasianthus CP genomes, the partial gene length and IR, LSC and SSC regions length are still different. The average GC content of the CP genomes was 36.71-36.75%, and a total of 129 genes were detected, including 83 different protein-coding genes, 8 different rRNA genes and 38 different tRNA genes. Furthermore, we compared our 4 complete CP genomes data with publicly available CP genome data from six other Lasianthus species, and we initially screened eleven highly variable region fragments were initially screened. We then evaluated the identification efficiency of eleven highly variable region fragments and 5 regular barcode fragments. Ultimately, we found that the optimal combination fragment' ITS2 + psaI-ycf4' could authenticated the Lasianthus species well. Additionally, the results of genome comparison of Rubiaceae species showed that the coding region is more conservative than the non-coding region, and the ycf1 gene shows the most significant variation. Finally, 49 species of CP genome sequences belonging to 16 genera of the Rubiaceae family were used to construct phylogenetic trees.
CONCLUSIONS
CONCLUSIONS
Our research is the first to analyze the chloroplast genomes of four species of Lasianthus in detail and we ultimately determined that the combination fragment' ITS2 + psaI-ycf4' is the optimal barcode combination for identifying the genus of Lasianthus. Meanwhile, we gathered the available CP genome sequences from the Rubiaceae and used them to construct the most comprehensive phylogenetic tree for the Rubiaceae family. These investigations provide an important reference point for further studies in the species identification, genetic diversity, and phylogenetic analyses of Rubiaceae species.
Identifiants
pubmed: 39285331
doi: 10.1186/s12870-024-05383-z
pii: 10.1186/s12870-024-05383-z
doi:
Substances chimiques
Genetic Markers
0
Types de publication
Journal Article
Comparative Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
867Subventions
Organisme : Yunnan "Xingdian Talent Support Program " young talents special project and CAMS Innovation Fund for Medical Sciences (CIFMS)
ID : 2021-I2M-1-032
Informations de copyright
© 2024. The Author(s).
Références
Arshed MJC, Alejandro GJD. A new Philippine endemic species and new records of Lasianthus (Lasiantheae, Rubiaceae). Phytotaxa. 2016;288:296–300. https://doi.org/10.11646/phytotaxa.288.3.12 .
Tan MA, Lagamayo MWD, Alejandro GJD, An SSA. Neuroblastoma SHSY5Y cytotoxicity, antiamyloidogenic activity and cyclooxygenase inhibition of Lasianthus Trichophlebus (Rubiaceae). 3 Biotech. 2020;10:152.
pubmed: 32181114
pmcid: 7054575
Yin CY, Yu J, Tang DY, Li HT, Li YH, Li G, Liu SF, Li XL, Mou Y. Investigation on the medicinal and edible plant resources of Dai nationality in Xishuangbanna. Biotic Resour. 2021;43(4):341.
Ong HC, Faezah AW, Milow P. Medicinal plants used by the Jah Hut Orang Asli at Kampung Pos Penderas, Pahang, Malaysia. Ethno Med. 2012;6(1):11–5.
Li B, Zhang DM, Luo YM, Chen XG. Three New and Antitumor Anthraquinone glycosides from Lasianthus Acuminatissimus MERR. Chem Pharm Bull. 2006;54(3):297–300.
Al-Hamoud GA, Orfali SR, Perveen S, Mizuno K, Takeda Y, Nehira T, Masuda K, Sugimoto S, Yamano Y, Otsuka H, Matsunami K. Lasianosides A–E: New Iridoid glucosides from the leaves of Lasianthus Verticillatus (Lour.) Merr. And their antioxidant activity. Molecules. 2019;24:3995.
pubmed: 31694179
pmcid: 6864479
Yu BW, Ge YC, Shi RJ, Ye T, Wu YH, Huo WZ. Chemical constituents from Lasianthus Wallichii. J Chin Med Mater. 2019;42(7):1550–3.
Cai M, Zhu H, Wang H. Pollen morphology of the genus Lasianthus (Rubiaceae) and related taxa from Asia. J Syst Evol. 2008;46(1):62–72.
Cai M. Study on Micromorphological Characteristics of Lasianthus from Rubiaceae. Xishuangbanna Tropical Botanical Garden. Chinese Academy of Sciences; 2006.
Arshed MJC, Valdez MB, Alejandro GJD. Evaluating the feasibility of five candidate DNA barcoding loci for Philippine Lasianthus Jack (Lasiantheae: Rubiaceae). Pharmacogn Mag. 2017;13(52):553–8.
pubmed: 29200712
pmcid: 5701390
Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S. Complete structure of the Chloroplast Genome of Arabidopsis thaliana. DNA Res. 1999;6:283–90.
pubmed: 10574454
Ferrarini M, Moretto M, Ward JA, Surbanovski N, Stevanovic V, Giongo L, Viola R, Cavalieri D, Velasco R, Cestaro A, Sargent DJ. An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genom. 2013;14:670.
Ahmad W, Asaf S, Khan A, Al-Harrasi A, Al-Okaishi A, Khan AL. Complete chloroplast genome sequencing and comparative analysis of threatened dragon trees Dracaena serrulata and Dracaena cinnabari. Sci Rep. 2022;12(1):16787.
pubmed: 36202844
pmcid: 9537188
Fan ZF, Ma CL. Comparative chloroplast genome and phylogenetic analyses of Chinese Polyspora. Sci Rep. 2022;12(1):15984.
pubmed: 36163343
pmcid: 9512918
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 2011;76:273–97.
pubmed: 21424877
pmcid: 3104136
Hong Z, Wu ZQ, Zhao KK, Yang ZJ, Zhang NN, Guo JY, Tembrock LR, Xu DP. Comparative analyses of five complete chloroplast genomes from the Genus Pterocarpus (Fabacaeae). Int J Mol Sci. 2020;21:3758.
pubmed: 32466556
pmcid: 7312355
Chen XL, Zhou JG, Cui YX, Wang Y, Duan BZ, Yao H. Identification of Ligularia herbs using the complete chloroplast genome as a Super-barcode. Front Pharmacol. 2018;9:695.
pubmed: 30034337
pmcid: 6043804
Yang HY, Wang LQ, Chen HM, Jiang M, Wu WW, Liu SY, Wang JH, Liu C. Phylogenetic analysis and development of molecular markers for five medicinal Alpinia species based on complete plastome sequences. BMC Plant Biol. 2021;21:431.
pubmed: 34551721
pmcid: 8456601
Zhang Y, Song MF, Li HT, Sun HF, Zhang ZL. DNA barcoding identification of original plants of a rare medicinal material Resina Draconis and related Dracaena species. China J Chin Mater Med. 2021;46:2173–81.
Brown J, Pirrung M, Lee AM. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics. 2017;33(19):3137–9.
pubmed: 28605449
pmcid: 5870778
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21:241.
pubmed: 32912315
pmcid: 7488116
Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies[J]. Bioinformatics. 2015;31(20):3350–2.
pubmed: 26099265
pmcid: 4595904
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.
pubmed: 22543367
pmcid: 3371832
Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44:W54–7.
pubmed: 27174935
pmcid: 4987944
Lohse M, Drechsel O, Kahlau S, Bock R. OrganellarGenomeDRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013;41:W575–81.
pubmed: 23609545
pmcid: 3692101
Sharp PM, Li WH. The codon Adaptation Index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15:1281–95.
pubmed: 3547335
pmcid: 340524
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing platforms. Mol Biol Evol. 2018;35(6):1547–9.
pubmed: 29722887
pmcid: 5967553
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29:4633–42.
pubmed: 11713313
pmcid: 92531
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160–6.
pubmed: 28968734
Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 2004;32:W273–9.
pubmed: 15215394
pmcid: 441596
Rozas J, Ferrer-Mata A, Sánchez-Delbarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. Mol Biol Evol. 2017;34(12):3299–302. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets.
Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a New and Scalable Tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2019;37(1):291–4.
pmcid: 6984357
Gu L, Su T, Luo GL, Hu GX. The complete chloroplast genome sequence of Heteropolygonatum Ginfushanicum (Asparagaceae) and phylogenetic analysis. Mitochondrial DNA Part B. 2021;6:1799–802.
pubmed: 34104777
pmcid: 8168753
Chen ZY, Yu XL, Yang YJ, Wei P, Zhang WC, Li XZ, Liu CL, Zhao SQ, Li XY, Liu X. Comparative analysis of Chloroplast genomes within Saxifraga (Saxifragaceae) takes insights into their genomic evolution and adaption to the high-elevation environment. Genes (Basel). 2022;13(9):1673.
pubmed: 36140840
Xu C, Cai X, Chen Q, Zhou H, Cai Y, Ben A. Factors affecting synonymous codon usage bias in chloroplast genome of oncidium gower ramsey. Evol Bioinform. 2011;7:271–8.
Das S, Paul S, Dutta C. Synonymous codon usage in adenoviruses: influence of mutation, selection and protein hydropathy. Virus Res. 2006;117(2):227–36.
pubmed: 16307819
Zhang Y, Song MF, Li Y, Sun HF, Tang DY, Xu AS, Yin CY, Zhang ZL, Zhang LX. Complete Chloroplast Genome Analysis of Two Important Medicinal Alpinia Species: Alpinia galanga and Alpinia kwangsiensis. Front Plant Sci. 2021;12:705892.
pubmed: 34975932
pmcid: 8714959
Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 2004;11(4):247–61.
pubmed: 15500250
Zhang P, Xu W, Lu X, Wang L. Analysis of codon usage bias of chloroplast genomes in Gynostemma species. Physiol Mol Biol Plants. 2021;27(12):2727–37.
pubmed: 35035132
pmcid: 8720125
Huang S, Kang ZJ, Chen ZF, Deng YF. Comparative analysis of the Chloroplast Genome of Cardamine hupingshanensis and phylogenetic study of Cardamine. Genes (Basel). 2022;13(11):2116.
pubmed: 36421792
Li Y, Kuang XJ, Zhu XX, Zhu YJ, Sun C. Codon usage bias of Catharanthus roseus. China J Chin Mater Med. 2016;41(22):4165–8.
Gao BM, Yuan L, Tang TL, Hou J, Pan K, Wei N. The complete chloroplast genome sequence of Alpinia Oxyphylla Miq. And comparison analysis within the Zingiberaceae family. PLoS ONE. 2019;14(6):e0218817.
pubmed: 31233551
pmcid: 6590956
Ivanova Z, Sablok G, Daskalova E, Zahmanova G, Apostolova E, Yahubyan G, Baev V. Chloroplast Genome Analysis of Resurrection Tertiary Relict Haberlea rhodopensis highlights genes important for desiccation stress response. Front Plant Sci. 2017;8:204.
pubmed: 28265281
pmcid: 5316520
Zuo LH, Shang AQ, Zhang S, Yu XY, Ren YC, Yang MS, Wang JM. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: genome comparative and taxonomic position analysis. PLoS ONE. 2017;12(2):e0171264.
pubmed: 28158318
pmcid: 5291543
Marechal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. New Phytol. 2010;186(2):299–317.
pubmed: 20180912
Ebert D, Peakall R. Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Res. 2009;9(3):673–90.
Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome. 2011;54:663–73.
pubmed: 21793699
Wang YF, Wen F, Hong X, Li ZL, Mi YL, Zhao B. Comparative chloroplast genome analyses of Paraboea (Gesneriaceae): insights into adaptive evolution and phylogenetic analysis. Front Plant Sci. 2022;13:1019831.
pubmed: 36275537
pmcid: 9581172
Flannery ML, Mitchell FJ, Coyne S, Kavanagh TA, Burke JI, Salamin N. Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs. Theor Appl Genet. 2006;113:1221–31.
pubmed: 16909279
Alzahrani DA, Albokhari EJ, Yaradua SS, Abba A. Comparative analysis of chloroplast genomes of four medicinal capparaceae species: genome structures, phylogenetic relationships and adaptive evolution. Plants. 2021;10:1229.
pubmed: 34204211
pmcid: 8234754
Zhou JG, Cui YX, Chen XL, Li Y, Xu ZC, Duan BZ, Li YH, Song JY, Yao H. Complete chloroplast genomes of Papaver rhoeas and Papaver orientale: molecular structures, comparative analysis and phylogenetic analysis. Molecules. 2018;23:437.
pubmed: 29462921
pmcid: 6017017
Asaf S, Waqas M, Khan AL, Khan MA, Kang SM, Imran QM, Shahzad R, Bilal S, Yun BW, Lee IJ. The complete chloroplast genome of Wild Rice (Oryza minuta) and its comparison to related species. Front Plant Sci. 2017;8:304.
pubmed: 28326093
pmcid: 5339285
Song WC, Chen ZM, He L, Feng Q, Zhang HR, Du GL, Shi C, Wang S. Comparative Chloroplast Genome Analysis of Wax Gourd (Benincasa hispida) with three Benincaseae species, revealing Evolutionary dynamic patterns and phylogenetic implications. Genes (Basel). 2022;13(3):461.
pubmed: 35328015
pmcid: 8954987
Zhang YJ, Du LW, Liu A, Chen JJ, Wu L, Hu WM, Zhang W, Kim K, Lee SD, Yang TJ, Wang Y. The Complete Chloroplast Genome Sequences of Five Epimedium Species: lights into phylogenetic and taxonomic analyses. Front Plant Sci. 2016;7:306.
pubmed: 27014326
pmcid: 4791396
Lu QX, Chang X, Gao J, Wu X, Wu J, Qi ZC, Wang RH, Yan XL, Li P. Evolutionary comparison of the complete chloroplast genomes in Convallaria Species and phylogenetic study of Asparagaceae. Genes (Basel). 2022;13(10):1724.
pubmed: 36292609
Szczecinska M, Sawicki J. Genomic resources of three Pulsatilla species reveal evolutionary hotspots, species-specific sites and Variable Plastid structure in the Family Ranunculaceae. Int J Mol Sci. 2015;16:22258–79.
pubmed: 26389887
pmcid: 4613307
Wang W, Messing J. High-throughput sequencing of three lemnoideae (duckweeds) chloroplast genomes from. PLoS ONE. 2011;6(9):e24670.
pubmed: 21931804
pmcid: 3170387
Pei JL, Wang Y, Zhuo J, Gao HB, Vasupalli N, Hou D, Lin XC. Complete chloroplast genome features of Dendrocalamusfarinosus and its comparison and evolutionary analysis with other Bambusoideae Species. Genes (Basel). 2022;13(9):1519.
pubmed: 36140690
pmcid: 9498922
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 2016;17:134.
pubmed: 27339192
pmcid: 4918201
Abdullah MF, Shahzadi I, Waseem S, Mirza B, Ahmed I, Waheed MT. Chloroplast genome of Hibiscus rosa-sinensis (Malvaceae): Comparative analyses and identification of mutational hotspots. Genomics. 2020; 112(1): 581–591.
Nazareno AG, Carlsen M, Lohmann LG. Complete chloroplast genome of Tanaecium Tetragonolobum: the first Bignoniaceae plastome. PLoS ONE. 2015;10(6):e0129930.
pubmed: 26103589
pmcid: 4478014
Cui YX, Chen XL, Nie LP, Sun W, Hu HY, Lin YL, Li HT, Zheng XL, Song JY, Yao H. Comparison and Phylogenetic Analysis of Chloroplast Genomes of Three Medicinal and Edible Amomum Species. Int J Mol Sci. 2019;20(16):4040.
pubmed: 31430862
pmcid: 6720276
Khakhlova O, Bock R. Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J. 2006;46:85–94.
pubmed: 16553897
Lee HJ, Koo HJ, Lee JH, Lee SC, Lee DY, Giang VNL, Kim M, Shim H, Park JY, Yoo KO, Sung SH, Yang TJ. Authentication of Zanthoxylum Species Based on Integrated Analysis of Complete Chloroplast Genome Sequences and metabolite profiles. J Agric Food Chem. 2017;65(47):10350–9.
pubmed: 29058421
Nguyen VB, Park HS, Lee SC, Lee J, Park JY, Yang TJ. Authentication markers for five major Panax species developed via comparative analysis of complete chloroplast genome sequences. J Agric Food Chem. 2017;65(30):6298–306.
pubmed: 28530408
Zhou Y, Nie J, Xiao L, Hu Z, Wang B. Comparative Chloroplast Genome Analysis of Rhubarb Botanical Origins and the development of specific identification markers. Molecules. 2018;23(11):2811.
pubmed: 30380708
pmcid: 6278470
Dong WP, Xu C, Li CH, Sun JH, Zuo YJ, Shi S, Cheng T, Guo JJ, Zhou SL. ycf1, the most promising plastid DNA barcode of land plants. Sci Rep. 2015;12(5):8348.
Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M. Uncovering the Protein Translocon at the Chloroplast Inner Envelope membrane. Science. 2013;339:571–4.
pubmed: 23372012
Anand A, Olson CA, Yang L, Sastry AV, Catoiu E, Choudhary KS, Phaneuf PV, Sandberg TE, Xu S, Hefner Y, Szubin R, Feist AM, Palsson BO. Pseudogene repair driven by selection pressure applied in experimental evolution. Nat Microbiol. 2019;4(3):386–9.
pubmed: 30692668
Bondino HG, Valle EM. A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana. BMC Mol Biol. 2009;10:95.
pubmed: 19835620
pmcid: 2772851
Mitra A, Han JG, Zhang ZJ, Mitra A. The intergenic region of Arabidopsis thaliana cab1 and cab2 divergent genes functions as a bidirectional promoter. Planta. 2009;229(5):1015–22.
pubmed: 19169705
Liu YX, Zhang MF, Chen XQ, Chen X, Hu Y, Gao JL, Pan WQ, Xin Y, Wu J, Du YP, Zhang XH. Developing an efficient DNA barcoding system to differentiate between Lilium species. BMC Plant Biol. 2021;21(1):465.
pubmed: 34645404
pmcid: 8513328
Li HT, Yi TS, Gao LM, Ma PF, Zhang T, Yang JB, Gitzendanner MA, Fritsch PW, Cai J, Luo Y, Wang H, van der Bank M, Zhang SD, Wang QF, Wang J, Zhang ZR, Fu CN, Yang J, Hollingsworth PM, Chase MW, Soltis DE, Soltis PS, Li DZ. Origin of angiosperms and the puzzle of the jurassic gap. Nat Plants. 2019;5(5):461–70.
pubmed: 31061536
Kyalo CM, Li ZZ, Mkala EM, Malombe I, Hu GW, Wang QF. The first glimpse of Streptocarpus Ionanthus (Gesneriaceae) Phylogenomics: analysis of five subspecies’ chloroplast genomes. Plants. 2020;9(4):456.
pubmed: 32260377
pmcid: 7238178
Tian XL, Wariss HM. The complete chloroplast genome sequence of Metabriggsia ovalifolia W. T. Wang (Gesneriaceae), a national key protected plant endemic to karst areas in China. Mitochondrial DNA B Resour. 2021;6(3):833–4.
pubmed: 33763595
pmcid: 7954431