Systematical characterization of Rab7 gene family in Gossypium and potential functions of GhRab7B3-A gene in drought tolerance.
Gossypium
Rab7 gene
Drought stress
Expression analysis
Gene silencing
Journal
BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
19
06
2024
accepted:
21
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Cotton serves as a primary source of natural fibers crucial for the textile industry. However, environmental elements such as drought have posed challenges to cotton cultivation, resulting in adverse impacts on both production and fiber quality. Improving cotton's resilience to drought could mitigate yield losses and foster the expansion of cotton farming. Rab7 protein, widely present in organisms, controls the degradation and recycling of cargo, and has a potential role in biotic and abiotic tolerance. However, comprehensive exploration of the Rab7 gene family in Gossypium remains scarce. Herein, we identified a total of 10, 10, 20, and 20 Rab7 genes through genome-wide analysis in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. Collinearity analysis unveiled the pivotal role of whole genome or segmental duplication events in the expansion of GhRab7s. Study of gene architecture, conserved protein motifs, and domains suggested the conservation of structure and function throughout evolution. Exploration of cis-regulatory elements revealed the responsiveness of GhRab7 genes to abiotic stress, corroborated by transcriptome analysis under diverse environmental stresses. Notably, the greatly induced expression of GhRab7B3-A under drought treatment prompted us to investigate its function through virus-induced gene silencing (VIGS) assays. Silencing GhRab7B3-A led to exacerbated dehydration and wilting compared with the control. Additionally, inhibition of stomatal closure, antioxidant enzyme activities and expression patterns of genes responsive to abiotic stress were observed in GhRab7B3-A silenced plants. This study sheds light on Rab7 members in cotton, identifies a gene linked to drought stress, and paves the way for additional investigation of Rab7 genes associated with drought stress tolerance.
Sections du résumé
BACKGROUND
BACKGROUND
Cotton serves as a primary source of natural fibers crucial for the textile industry. However, environmental elements such as drought have posed challenges to cotton cultivation, resulting in adverse impacts on both production and fiber quality. Improving cotton's resilience to drought could mitigate yield losses and foster the expansion of cotton farming. Rab7 protein, widely present in organisms, controls the degradation and recycling of cargo, and has a potential role in biotic and abiotic tolerance. However, comprehensive exploration of the Rab7 gene family in Gossypium remains scarce.
RESULTS
RESULTS
Herein, we identified a total of 10, 10, 20, and 20 Rab7 genes through genome-wide analysis in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. Collinearity analysis unveiled the pivotal role of whole genome or segmental duplication events in the expansion of GhRab7s. Study of gene architecture, conserved protein motifs, and domains suggested the conservation of structure and function throughout evolution. Exploration of cis-regulatory elements revealed the responsiveness of GhRab7 genes to abiotic stress, corroborated by transcriptome analysis under diverse environmental stresses. Notably, the greatly induced expression of GhRab7B3-A under drought treatment prompted us to investigate its function through virus-induced gene silencing (VIGS) assays. Silencing GhRab7B3-A led to exacerbated dehydration and wilting compared with the control. Additionally, inhibition of stomatal closure, antioxidant enzyme activities and expression patterns of genes responsive to abiotic stress were observed in GhRab7B3-A silenced plants.
CONCLUSIONS
CONCLUSIONS
This study sheds light on Rab7 members in cotton, identifies a gene linked to drought stress, and paves the way for additional investigation of Rab7 genes associated with drought stress tolerance.
Identifiants
pubmed: 39482579
doi: 10.1186/s12864-024-10930-x
pii: 10.1186/s12864-024-10930-x
doi:
Substances chimiques
Plant Proteins
0
rab GTP-Binding Proteins
EC 3.6.5.2
rab7 GTP-Binding Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1023Subventions
Organisme : the National Natural Science Foundation of China
ID : 32301747
Organisme : the Program for Research and Development of Zhejiang A&F University
ID : 2022LFR108
Informations de copyright
© 2024. The Author(s).
Références
Bischoff F, Molendijk A, Rajendrakumar CS, Palme K. GTP-binding proteins in plants. Cell Mol Life Sci. 1999;55(2):233–56.
pubmed: 10188584
pmcid: 11146754
doi: 10.1007/s000180050287
Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev. 2001;81(1):153–208.
pubmed: 11152757
doi: 10.1152/physrev.2001.81.1.153
Agola JO, Jim PA, Ward HH, Basuray S, Wandinger-Ness A. Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities. Clin Genet. 2011;80(4):305–18.
pubmed: 21651512
pmcid: 3187864
doi: 10.1111/j.1399-0004.2011.01724.x
Chua CE, Gan BQ, Tang BL. Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation. Cell Mol Life Sci. 2011;68(20):3349–58.
pubmed: 21687989
pmcid: 11114630
doi: 10.1007/s00018-011-0748-9
Pfeffer SR. Rab GTPase regulation of membrane identity. Curr Opin Cell Biol. 2013;25(4):414–9.
pubmed: 23639309
pmcid: 3729790
doi: 10.1016/j.ceb.2013.04.002
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–25.
pubmed: 19603039
doi: 10.1038/nrm2728
Jiang SY, Ramachandran S. Comparative and evolutionary analysis of genes encoding small GTPases and their activating proteins in eukaryotic genomes. Physiol Genomics. 2006;24(3):235–51.
pubmed: 16332933
doi: 10.1152/physiolgenomics.00210.2005
Vernoud V, Horton AC, Yang Z, Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 2003;131(3):1191–208.
pubmed: 12644670
pmcid: 166880
doi: 10.1104/pp.013052
Zhang J, Li Y, Liu B, Wang L, Zhang L, Hu J, Chen J, Zheng H, Lu M. Characterization of the Populus Rab family genes and the function of PtRabE1b in salt tolerance. BMC Plant Biol. 2018;18(1):124.
pubmed: 29914373
pmcid: 6006591
doi: 10.1186/s12870-018-1342-1
Tripathy MK, Deswal R, Sopory SK. Plant rabs: role in development and in abiotic and biotic stress responses. Curr Genomics. 2021;22(1):26–40.
pubmed: 34045922
pmcid: 8142350
doi: 10.2174/18755488MTEzxMzAuz
Lazar T, Götte M, Gallwitz D. Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell? Trends Biochem Sci. 1997;22(12):468–72.
pubmed: 9433126
doi: 10.1016/S0968-0004(97)01150-X
Pereira-Leal JB, Seabra MC. Evolution of the rab family of small GTP-binding proteins. J Mol Biol. 2001;313(4):889–901.
pubmed: 11697911
doi: 10.1006/jmbi.2001.5072
Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2(2):107–17.
pubmed: 11252952
doi: 10.1038/35052055
Agarwal P, Reddy MK, Sopory SK, Agarwal PK. Plant rabs: characterization, functional diversity, and role in stress tolerance. Plant Mol Biol Rep. 2009;27(4):417–30.
doi: 10.1007/s11105-009-0100-9
Zhang J, Hill DR, Sylvester AW. Diversification of the RAB guanosine triphosphatase family in dicots and monocots. J Integr Plant Biol. 2007;49(8):1129–41.
doi: 10.1111/j.1672-9072.2007.00520.x
Batoko H, Zheng HQ, Hawes C, Moore I. A rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal golgi movement in plants. Plant Cell. 2000;12(11):2201–18.
pubmed: 11090219
pmcid: 150168
doi: 10.1105/tpc.12.11.2201
Park YS, Song O, Kwak JM, Hong SW, Lee HH, Nam HG. Functional complementation of a yeast vesicular transport mutation ypt1-1 by a Brassica napus cDNA clone encoding a small GTP-binding protein. Plant Mol Biol. 1994;26(6):1725–35.
pubmed: 7858213
doi: 10.1007/BF00019487
Cheung AY, Chen CY, Glaven RH, de Graaf BH, Vidali L, Hepler PK, Wu HM. Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the golgi bodies and is important to pollen tube growth. Plant Cell. 2002;14(4):945–62.
pubmed: 11971147
pmcid: 150694
doi: 10.1105/tpc.000836
Bednarek SY, Reynolds TL, Schroeder M, Grabowski R, Hengst L, Gallwitz D, Raikhel NV. A small GTP-binding protein from Arabidopsis thaliana functionally complements the yeast YPT6 null mutant. Plant Physiol. 1994;104(2):591–6.
pubmed: 8159788
pmcid: 159235
doi: 10.1104/pp.104.2.591
Speth EB, Imboden L, Hauck P, He SY. Subcellular localization and functional analysis of the Arabidopsis GTPase RabE. Plant Physiol. 2009;149(4):1824–37.
pubmed: 19233904
pmcid: 2663744
doi: 10.1104/pp.108.132092
Zheng H, Camacho L, Wee E, Batoko H, Legen J, Leaver CJ, Malhó R, Hussey PJ, Moore I. A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic membrane traffic to the plasma membrane in tobacco leaf epidermis. Plant Cell. 2005;17(7):2020–36.
pubmed: 15972698
pmcid: 1167549
doi: 10.1105/tpc.105.031112
Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A. Arabidopsis RABA1 GTPases are involved in transport between the trans-golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J. 2013;73(2):240–9.
pubmed: 22974509
doi: 10.1111/tpj.12023
de Graaf BH, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu HM. Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell. 2005;17(9):2564–79.
pubmed: 16100336
pmcid: 1197435
doi: 10.1105/tpc.105.033183
Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell. 1992;70(5):715–28.
pubmed: 1516130
doi: 10.1016/0092-8674(92)90306-W
Christoforidis S, McBride HM, Burgoyne RD, Zerial M. The Rab5 effector EEA1 is a core component of endosome docking. Nature. 1999;397(6720):621–5.
pubmed: 10050856
doi: 10.1038/17618
Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B. Rab7: a key to lysosome biogenesis. Mol Biol Cell. 2000;11(2):467–80.
pubmed: 10679007
pmcid: 14786
doi: 10.1091/mbc.11.2.467
Girard E, Chmiest D, Fournier N, Johannes L, Paul JL, Vedie B, Lamaze C. Rab7 is functionally required for selective cargo sorting at the early endosome. Traffic. 2014;15(3):309–26.
pubmed: 24329906
doi: 10.1111/tra.12143
Pan T, Wang Y, Jing R, Wang Y, Wei Z, Zhang B, Lei C, Qi Y, Wang F, Bao X, et al. Post-golgi trafficking of rice storage proteins requires the small GTPase Rab7 activation complex MON1-CCZ1. Plant Physiol. 2021;187(4):2174–91.
pubmed: 33871646
pmcid: 8644195
doi: 10.1093/plphys/kiab175
Liu F, Guo J, Bai P, Duan Y, Wang X, Cheng Y, Feng H, Huang L, Kang Z. Wheat TaRab7 GTPase is part of the signaling pathway in responses to stripe rust and abiotic stimuli. PLoS ONE. 2012;7(5):e37146.
pubmed: 22629358
pmcid: 3358313
doi: 10.1371/journal.pone.0037146
Mazel A, Leshem Y, Tiwari BS, Levine A. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol. 2004;134(1):118–28.
pubmed: 14657401
pmcid: 316292
doi: 10.1104/pp.103.025379
Agarwal PK, Agarwal P, Jain P, Jha B, Reddy MK, Sopory SK. Constitutive overexpression of a stress-inducible small GTP-binding protein PgRab7 from Pennisetum glaucum enhances abiotic stress tolerance in transgenic tobacco. Plant Cell Rep. 2008;27(1):105–15.
pubmed: 17899098
doi: 10.1007/s00299-007-0446-0
Tripathy MK, Tiwari BS, Reddy MK, Deswal R, Sopory SK. Ectopic expression of PgRab7 in rice plants (Oryza sativa L.) results in differential tolerance at the vegetative and seed setting stage during salinity and drought stress. Protoplasma. 2017;254(1):109–24.
pubmed: 26666551
doi: 10.1007/s00709-015-0914-2
George S, Parida A. Over-expression of a Rab family GTPase from phreatophyte Prosopis juliflora confers tolerance to salt stress on transgenic tobacco. Mol Biol Rep. 2011;38(3):1669–74.
pubmed: 20862551
doi: 10.1007/s11033-010-0278-9
Peng X, Ding X, Chang T, Wang Z, Liu R, Zeng X, Cai Y, Zhu Y. Overexpression of a vesicle trafficking gene, OsRab7, enhances salt tolerance in rice. ScientificWorldJournal. 2014;2014:483526.
El-Esawi MA, Alayafi AA. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L). Genes. 2019;10(1):56.
pubmed: 30658457
pmcid: 6357162
doi: 10.3390/genes10010056
Panchy N, Lehti-Shiu M, Shiu SH. Evolution of gene duplication in plants. Plant Physiol. 2016;171(4):2294–316.
pubmed: 27288366
pmcid: 4972278
doi: 10.1104/pp.16.00523
Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012;492(7429):423–7.
pubmed: 23257886
doi: 10.1038/nature11798
Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33(5):524–30.
pubmed: 25893780
doi: 10.1038/nbt.3208
Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51(4):739–48.
pubmed: 30886425
doi: 10.1038/s41588-019-0371-5
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003;15(1):63–78.
pubmed: 12509522
pmcid: 143451
doi: 10.1105/tpc.006130
Abe H, Yamaguchi-Shinozaki K, Urao T, lwasaki T, Hosokawa D, Shinozaki K. Role of arabidopsis MYC and MYB homologs in droughtand abscisic acid-regulated gene expression. Plant Cell. 1997;9(10):1859–68.
pubmed: 9368419
pmcid: 157027
Davies WJ, Kudoyarova G, Hartung W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. J Plant Growth Regul. 2005;24(4):285.
doi: 10.1007/s00344-005-0103-1
Lim CW, Baek W, Jung J, Kim JH, Lee SC. Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci. 2015;16(7):15251–70.
pubmed: 26154766
pmcid: 4519898
doi: 10.3390/ijms160715251
Ruan YL. Boosting seed development as a new strategy to increase cotton fiber yield and quality. J Integr Plant Biol. 2013;55(7):572–5.
pubmed: 23718313
doi: 10.1111/jipb.12074
Saud S, Wang L. Mechanism of cotton resistance to abiotic stress, and recent research advances in the osmoregulation related genes. Front Plant Sci. 2022;13:972635.
pubmed: 36061778
pmcid: 9428623
doi: 10.3389/fpls.2022.972635
Billah M, Li F, Yang Z. Regulatory network of cotton genes in response to salt, drought and wilt diseases (Verticillium and Fusarium): progress and perspective. Front Plant Sci. 2021;12:759245.
pubmed: 34912357
pmcid: 8666531
doi: 10.3389/fpls.2021.759245
Ullah A, Sun H, Yang X, Zhang X. Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J. 2017;15(3):271–84.
pubmed: 28055133
pmcid: 5316925
doi: 10.1111/pbi.12688
Yang Z. Small GTPases: versatile signaling switches in plants. Plant Cell. 2002;14(SupplSuppl):S375–388.
pubmed: 12045289
pmcid: 151267
doi: 10.1105/tpc.001065
Zhang X, Li X, Zhao R, Zhou Y, Jiao Y. Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families. New Phytol. 2020;226(5):1506–1516.
Leuschner C, Schipka F, Backes K. Stomatal regulation and water potential variation in European beech: challenging the iso/anisohydry concept. Tree Physiol. 2022;42(2):365–78.
pubmed: 34415347
doi: 10.1093/treephys/tpab104
Zhang Y, Luan Q, Jiang J, Li Y. Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Front Plant Sci. 2021;12:735275.
pubmed: 34733301
pmcid: 8558207
doi: 10.3389/fpls.2021.735275
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33(4):453–67.
pubmed: 19712065
doi: 10.1111/j.1365-3040.2009.02041.x
Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem. 1989;58:79–110.
pubmed: 2673022
doi: 10.1146/annurev.bi.58.070189.000455
Bartoli CG, Simontacchi M, Tambussi E, Beltrano J. Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J Exp Bot. 1999;50:375–83.
doi: 10.1093/jxb/50.332.375
Borsani O, Diaz P, Agius MF, Valpuesta V, Monza J. Water stress generates an oxidative stress through the induction of a specific Cu/Zn superoxide dismutase in Lotus corniculatus leaves. Plant Sci. 2001;161:757–63.
doi: 10.1016/S0168-9452(01)00467-8
Tanaka K, Masuda R, Sugimoto T, Omasa K, Sakaki Z. Water deficiency-induced changes in the contents of defensive substances against active oxygen in spinach leaves. Agric Biol Chem. 1990;54:2629–34.
doi: 10.1080/00021369.1990.10870355
Terzi R, Kadioglu A. Drought stress tolerance and the antioxidant enzyme system. Acta Biol Cracov Bot. 2006;48:89–96.
Jia H, Zhang S, Ruan M, Wang Y, Wang C. Analysis and application of RD29 genes in abiotic stress response. Acta Physiol Plant. 2012;34(4):1239–50.
doi: 10.1007/s11738-012-0969-z
Li F, Li M, Wang P, Cox KL Jr., Duan L, Dever JK, Shan L, Li Z, He P. Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. New Phytol. 2017;215(4):1462–75.
pubmed: 28700082
doi: 10.1111/nph.14680
Meng C, Cai C, Zhang T, Guo W. Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Sci. 2009;176(3):352–9.
doi: 10.1016/j.plantsci.2008.12.003
Su J, Zhan N, Cheng X, Song S, Dong T, Ge X, Duan H. Genome-wide analysis of cotton MYB transcription factors and the functional validation of GhMYB in response to drought stress. Plant Cell Physiol. 2024;65(1):79–94.
pubmed: 37847105
doi: 10.1093/pcp/pcad125
Wang M, Li J, Wang P, Liu F, Liu Z, Zhao G, Xu Z, Pei L, Grover CE, Wendel JF, et al. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Mol Biol Evol. 2021;38(9):3621–36.
pubmed: 33973633
pmcid: 8382922
doi: 10.1093/molbev/msab128
Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet. 2019;51(2):224–9.
pubmed: 30510239
doi: 10.1038/s41588-018-0282-x
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
pubmed: 15034147
pmcid: 390337
doi: 10.1093/nar/gkh340
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9.
pubmed: 28481363
pmcid: 5453245
doi: 10.1038/nmeth.4285
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.
pubmed: 32585190
doi: 10.1016/j.molp.2020.06.009
Reyes MI, Flores-Vergara MA, Guerra-Peraza O, Rajabu C, Desai J, Hiromoto-Ruiz YH, Ndunguru J, Hanley-Bowdoin L, Kjemtrup S, Ascencio-Ibáñez JT, et al. A VIGS screen identifies immunity in the Arabidopsis Pla-1 accession to viruses in two different genera of the Geminiviridae. Plant J. 2017;92(5):796–807.
Yan M, Yu X, Zhou G, Sun D, Hu Y, Huang C, Zheng Q, Sun N, Wu J, Fu Z, et al. GhCDPK60 positively regulates drought stress tolerance in both transgenic Arabidopsis and cotton by regulating proline content and ROS level. Front Plant Sci. 2022;13:1072584.
pubmed: 36531339
pmcid: 9751749
doi: 10.3389/fpls.2022.1072584
Zou J, Hu W, Li Y, He J, Zhu H, Zhou Z. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L). J Integr Agr. 2020;19(2):495–508.
doi: 10.1016/S2095-3119(19)62696-1
Alici EH, Arabaci G. Determination of SOD, POD, PPO and cat enzyme activities in Rumex obtusifolius L. Annual Res Rev Biology. 2016;11:1–7.
doi: 10.9734/ARRB/2016/29809
Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y, et al. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ. 2013;36(8):1449–64.
pubmed: 23356734
doi: 10.1111/pce.12074
Porra RJ. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res. 2002;73(1–3):149–56.
pubmed: 16245116
doi: 10.1023/A:1020470224740
Schmedes A, Hølmer G. A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. J Am Oil Chem Soc. 1989;66(6):813–7.
doi: 10.1007/BF02653674
Ullah A, Sun H, Hakim, Yang X, Zhang X. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiol Plant. 2018;162(4):439–54.
pubmed: 29027659
doi: 10.1111/ppl.12651
Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol. 2010;10:49.
pubmed: 20302670
pmcid: 2923523
doi: 10.1186/1471-2229-10-49
Wang M, Wang Q, Zhang B. Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L). Gene. 2013;530(1):44–50.
pubmed: 23933278
doi: 10.1016/j.gene.2013.07.084
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2
pubmed: 11846609
doi: 10.1006/meth.2001.1262