Comparative genomic analysis and characterization of novel high-quality draft genomes from the coal metagenome.
Binning
Coal microbiome
Functional diversity
Metagenome-assembled genomes (MAGs)
Syntrophic
Journal
World journal of microbiology & biotechnology
ISSN: 1573-0972
Titre abrégé: World J Microbiol Biotechnol
Pays: Germany
ID NLM: 9012472
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
06
07
2024
accepted:
18
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Coal, a sedimentary rock harbours a complex microbial community that plays a significant role in its formation and characteristics. However, coal metagenome sequencing and studies were less, limiting our understanding of this complex ecosystem. This study aimed to reconstruct high-quality metagenome-assembled genomes (MAGs) from the coal sample collected in the Neyveli mine to explore the unrevealed diversity of the coal microbiome. Using Illumina sequencing, we obtained high-quality raw reads in FASTQ format. Subsequently, de novo assembly and binning with metaWRAP software facilitated the reconstruction of coal MAGs. Quality assessment using CheckM identified 10 High-Quality MAGs (HQ MAGs), 7 medium-quality MAGs (MQ MAGs), and 6 low-quality MAGs (LQ MAGs). Further analysis using GTDB-Tk revealed four HQ MAGs as known species like Dermacoccus abyssi, Sphingomonas aquatilis, Acinetobacter baumannii, and Burkholderia cenocepacia. The remaining six HQ MAGs were classified as Comamonas, Arthrobacter, Noviherbaspirillum, Acidovorax, Oxalicibacterium, and Bordetella and designated as novel genomes by the validation of digital DNA-DNA hybridization (dDDH). Phylogenetic analysis and further pangenome analysis across the phylogenetic groups revealed a similar pattern with a high proportion of cloud genes. We further analysed the functional potential of these MAGs and closely related genomes using COG. The comparative functional genomics revealed that novel genomes are highly versatile, potentially reflecting adaptations to the coal environment. BlastKOALA was used to conduct a detailed analysis of the metabolic pathways associated with the MAGs. This study highlights the comparative genomic analysis of novel coal genomes with their closely related genomes to understand the evolutionary relationships and functional properties.
Identifiants
pubmed: 39485561
doi: 10.1007/s11274-024-04174-w
pii: 10.1007/s11274-024-04174-w
doi:
Substances chimiques
Coal
0
DNA, Bacterial
0
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Comparative Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
370Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Aguilera S, Aguilar ME, Chã¡vez MP, et al (2004) Essential residues in the chromate transporter ChrA ofPseudomonas aeruginosa. FEMS Microbiol Lett 232:107–112. https://doi.org/10.1016/s0378-1097(04)00068-0
doi: 10.1016/s0378-1097(04)00068-0
pubmed: 15019742
Ahmed N, Azab M, Enany S, Hanora A (2024) Draft genome sequence of novel Candidatus Ornithobacterium hominis carrying antimicrobial resistance genes in Egypt. BMC Microbiol 24:47. https://doi.org/10.1186/s12866-023-03172-6
doi: 10.1186/s12866-023-03172-6
pubmed: 38302869
pmcid: 10835994
Akimbekov NS, Digel I, Tastambek KT et al (2022) Biotechnology of microorganisms from coal environments: From environmental remediation to energy production. Biology (Basel) 11:1306. https://doi.org/10.3390/biology11091306
doi: 10.3390/biology11091306
pubmed: 36138784
Alneberg J, Bjarnason BS, de Bruijn I et al (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146. https://doi.org/10.1038/nmeth.3103
doi: 10.1038/nmeth.3103
pubmed: 25218180
Anantharaman K, Brown CT, Hug LA et al (2016) Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun 7:13219. https://doi.org/10.1038/ncomms13219
doi: 10.1038/ncomms13219
pubmed: 27774985
pmcid: 5079060
Andersen MH, McIlroy SJ, Nierychlo M et al (2019) Genomic insights into Candidatus Amarolinea aalborgensis gen. nov., sp. nov., associated with settleability problems in wastewater treatment plants. Syst Appl Microbiol 42:77–84. https://doi.org/10.1016/j.syapm.2018.08.001
doi: 10.1016/j.syapm.2018.08.001
pubmed: 30146409
Auch AF, von Jan M, Klenk H-P, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134. https://doi.org/10.4056/sigs.531120
doi: 10.4056/sigs.531120
pubmed: 21304684
pmcid: 3035253
Baldani JI, Rouws L, Cruz LM et al (2014) The Family Oxalobacteraceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 919–974
doi: 10.1007/978-3-642-30197-1_291
Barnum TP, Figueroa IA, Carlström CI et al (2018) Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. The ISME J 12:1568–1581. https://doi.org/10.1038/s41396-018-0081-5
doi: 10.1038/s41396-018-0081-5
pubmed: 29476141
Benoit G, Raguideau S, James R et al (2024) High-quality metagenome assembly from long accurate reads with metaMDBG. Nat Biotechnol. https://doi.org/10.1038/s41587-023-01983-6
doi: 10.1038/s41587-023-01983-6
pubmed: 38168989
pmcid: 11392814
Bhattacharya A, Das S, Bhattacharjee MJ et al (2023) Comparative pangenomic analysis of predominant human vaginal lactobacilli strains towards population-specific adaptation: understanding the role in sustaining a balanced and healthy vaginal microenvironment. BMC Genomics 24:565. https://doi.org/10.1186/s12864-023-09665-y
doi: 10.1186/s12864-023-09665-y
pubmed: 37740204
pmcid: 10517566
Bollmann A, Sedlacek CJ, Sayavedra-Soto L, Norton JM (2024) Metagenome-assembled genomes of two nitrifying microorganisms from the freshwater archaeal ammonia-oxidizing enrichment culture BO1. Microbiol Resour Announc 13:e0090023. https://doi.org/10.1128/mra.00900-23
doi: 10.1128/mra.00900-23
pubmed: 38265223
Bowers RM, Kyrpides NC, Stepanauskas R et al (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35:725–731. https://doi.org/10.1038/nbt.3893
doi: 10.1038/nbt.3893
pubmed: 28787424
pmcid: 6436528
Busse H-J, Schumann P (2019) Reclassification of Arthrobacter enclensis as Pseudarthrobacter enclensis comb. nov., and emended descriptions of the genus Pseudarthrobacter, and the species Pseudarthrobacter phenanthrenivorans and Pseudarthrobacter scleromae. Int J Syst Evol Microbiol 69:3508–3511. https://doi.org/10.1099/ijsem.0.003652
doi: 10.1099/ijsem.0.003652
pubmed: 31424381
Campbell C, B, Gong S, Greenfield P, et al (2021) Aromatic compound degrading taxa in an anoxic coal seam microbiome from the Surat Basin Australia. Fems Microbiol Ecol. https://doi.org/10.1093/femsec/fiab053
doi: 10.1093/femsec/fiab053
pubmed: 33705534
Campbell BC, Tran-Dinh N, Greenfield P et al (2023) A novel tail: one story from the rare taxa of the coal seam microbiome. Int J Coal Geol 279:104371. https://doi.org/10.1016/j.coal.2023.104371
doi: 10.1016/j.coal.2023.104371
Campbell BC, Greenfield P, Barnhart EP et al (2024) Krumholzibacteriota and Deltaproteobacteria contain rare genetic potential to liberate carbon from monoaromatic compounds in subsurface coal seams. mBio 15:e0173523. https://doi.org/10.1128/mbio.01735-23
doi: 10.1128/mbio.01735-23
pubmed: 38345372
Cantu-Bustos JE, Vargas-Cortez T, Morones-Ramirez JR et al (2016) Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF. Protein Expr Purif 121:61–65. https://doi.org/10.1016/j.pep.2016.01.007
doi: 10.1016/j.pep.2016.01.007
pubmed: 26805756
Castro-Severyn J, Pardo-Esté C, Araya-Durán I et al (2022) Biochemical, genomic and structural characteristics of the Acr3 pump in Exiguobacterium strains isolated from arsenic-rich Salar de Huasco sediments. Front Microbiol. https://doi.org/10.3389/fmicb.2022.1047283
doi: 10.3389/fmicb.2022.1047283
pubmed: 36406427
pmcid: 9671657
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH (2022) GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38:5315–5316. https://doi.org/10.1093/bioinformatics/btac672
doi: 10.1093/bioinformatics/btac672
pubmed: 36218463
pmcid: 9710552
Chen D, Feng Q (2023) Microbial community structure, metabolic function, and phenotypic characteristics of sediment in deep coal mine underground environment. China Water (Basel) 15:2371. https://doi.org/10.3390/w15132371
doi: 10.3390/w15132371
Chew SY, Chee WJY, Than LTL (2019) The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae. J Biomed Sci 26:52. https://doi.org/10.1186/s12929-019-0546-5
doi: 10.1186/s12929-019-0546-5
pubmed: 31301737
pmcid: 6626413
Choi J-H, Kim M, Roh SW, Bae J-W (2010) Acidovorax soli sp nov., isolated from landfill soil. Int J Syst Evol Microbiol 60:2715–2718. https://doi.org/10.1099/ijs.0.019661-0
doi: 10.1099/ijs.0.019661-0
pubmed: 20061503
Comi G, Cantoni C (2011) Psychrotrophic bacteria | Arthrobacter spp. In: Fuquay JW (ed) Encyclopedia of Dairy Sciences, 2nd edn. Academic Press, San Diego, Second Edi, pp 372–378
doi: 10.1016/B978-0-12-374407-4.00440-4
Dai S, Finkelman RB, French D et al (2021) Modes of occurrence of elements in coal: a critical evaluation. Earth Sci Rev 222:103815. https://doi.org/10.1016/j.earscirev.2021.103815
doi: 10.1016/j.earscirev.2021.103815
Detman A, Bucha M, Treu L et al (2021) Evaluation of acidogenesis products’ effect on biogas production performed with metagenomics and isotopic approaches. Biotechnol Biofuels 14:125. https://doi.org/10.1186/s13068-021-01968-0
doi: 10.1186/s13068-021-01968-0
pubmed: 34051845
pmcid: 8164749
Du J, Liu Y, Zhu H (2022) Genome-based analyses of the genus Acidovorax: proposal of the two novel genera Paracidovorax gen. nov., Paenacidovorax gen. nov. and the reclassification of Acidovorax antarcticus as comamonas antarctica comb. nov. and emended description of the genus Acidovorax. Arch Microbiol 205:42
doi: 10.1007/s00203-022-03379-7
pubmed: 36574033
Ercolini D (2013) High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl Environ Microbiol 79:3148–3155. https://doi.org/10.1128/AEM.00256-13
doi: 10.1128/AEM.00256-13
pubmed: 23475615
pmcid: 3685257
Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354
doi: 10.1093/bioinformatics/btw354
pubmed: 27312411
pmcid: 5039924
Flores RM (2014) Coalification, gasification, and gas Storage. In: Coal and Coalbed Gas. Elsevier, pp 167–233
Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812. https://doi.org/10.1128/jb.185.13.3804-3812.2003
doi: 10.1128/jb.185.13.3804-3812.2003
pubmed: 12813074
pmcid: 161567
Fu L, Lai S, Zhou Z et al (2023) Seasonal variation of microbial community and methane metabolism in coalbed water in the Erlian Basin. China Front Microbiol 14:1114201. https://doi.org/10.3389/fmicb.2023.1114201
doi: 10.3389/fmicb.2023.1114201
pubmed: 36846781
Fujimoto K, Kimura Y, Shimohigoshi M et al (2020) Metagenome data on intestinal phage-bacteria associations aids the development of phage therapy against pathobionts. Cell Host Microbe 28:380-389.e9. https://doi.org/10.1016/j.chom.2020.06.005
doi: 10.1016/j.chom.2020.06.005
pubmed: 32652061
Galperin MY, Wolf YI, Makarova KS et al (2021) COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res 49:D274–D281. https://doi.org/10.1093/nar/gkaa1018
doi: 10.1093/nar/gkaa1018
pubmed: 33167031
Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0
doi: 10.1099/ijs.0.64483-0
pubmed: 17220447
Grant JR, Enns E, Marinier E, et al (2023) Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 51:W484–W492. https://doi.org/10.1093/nar/gkad326
Gross R, Guzman CA, Sebaihia M et al (2008) The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics 9:449. https://doi.org/10.1186/1471-2164-9-449
doi: 10.1186/1471-2164-9-449
pubmed: 18826580
pmcid: 2572626
Guzman MI, Eugene AJ (2021) Aqueous photochemistry of 2-oxocarboxylic acids: evidence, mechanisms, and atmospheric impact. Molecules 26:5278. https://doi.org/10.3390/molecules26175278
doi: 10.3390/molecules26175278
pubmed: 34500711
pmcid: 8433822
Haque F, Jabeen I, Keya CA, Shuvo SR (2022) Whole-genome sequencing and comparative analysis of heavy metals tolerant Bacillus anthracis FHq strain isolated from tannery effluents in Bangladesh. AIMS Microbiol 8:226–238. https://doi.org/10.3934/microbiol.2022018
doi: 10.3934/microbiol.2022018
pmcid: 9329874
Hussain D, Haydon MJ, Wang Y et al (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339. https://doi.org/10.1105/tpc.020487
doi: 10.1105/tpc.020487
pubmed: 15100400
pmcid: 423219
Iqbal S, Begum F, Ullah I et al (2024) Peeling off the layers from microbial dark matter (MDM): recent advances, future challenges, and opportunities. Crit Rev Microbiol. https://doi.org/10.1080/1040841x.2024.2319669
doi: 10.1080/1040841x.2024.2319669
pubmed: 38385313
Jain C, Rodriguez-R LM, Phillippy AM et al (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. https://doi.org/10.1038/s41467-018-07641-9
doi: 10.1038/s41467-018-07641-9
pubmed: 30504855
pmcid: 6269478
Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. https://doi.org/10.1016/j.jmb.2015.11.006
doi: 10.1016/j.jmb.2015.11.006
pubmed: 26585406
Kang DD, Li F, Kirton E et al (2019) MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359. https://doi.org/10.7717/peerj.7359
doi: 10.7717/peerj.7359
pubmed: 31388474
pmcid: 6662567
Karbowska B, Włódarzewska E, Zembrzuski W et al (2023) Determination of some heavy metals in European and polish coal samples. Molecules 28:8055. https://doi.org/10.3390/molecules28248055
doi: 10.3390/molecules28248055
pubmed: 38138545
pmcid: 10745848
Kim M, Rhee C, Wells M et al (2022) Key players in syntrophic propionate oxidation revealed by metagenome-assembled genomes from anaerobic digesters bioaugmented with propionic acid enriched microbial consortia. Front Microbiol 13:968416. https://doi.org/10.3389/fmicb.2022.968416
doi: 10.3389/fmicb.2022.968416
pubmed: 36466635
pmcid: 9712193
Kiskira K, Papirio S, van Hullebusch ED, Esposito G (2017) Fe(II)-mediated autotrophic denitrification: a new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing wastewaters. Int Biodeterior Biodegrad 119:631–648. https://doi.org/10.1016/j.ibiod.2016.09.020
doi: 10.1016/j.ibiod.2016.09.020
Kolaj-Robin O, Russell D, Hayes KA et al (2015) Cation diffusion facilitator family: structure and function. FEBS Lett 589:1283–1295. https://doi.org/10.1016/j.febslet.2015.04.007
doi: 10.1016/j.febslet.2015.04.007
pubmed: 25896018
Kou B, He Y, Wang Y et al (2023) The relationships between heavy metals and bacterial communities in a coal gangue site. Environ Pollut 322:121136. https://doi.org/10.1016/j.envpol.2023.121136
doi: 10.1016/j.envpol.2023.121136
pubmed: 36736561
Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. https://doi.org/10.1093/nar/gkab301
doi: 10.1093/nar/gkab301
pubmed: 33885785
pmcid: 8265157
Li X, Hu Y, Gong J et al (2013) Comparative genome characterization of Achromobacter members reveals potential genetic determinants facilitating the adaptation to a pathogenic lifestyle. Appl Microbiol Biotechnol 97:6413–6425. https://doi.org/10.1007/s00253-013-5018-3
doi: 10.1007/s00253-013-5018-3
pubmed: 23749121
Li Y, Liu B, Tu Q et al (2022) The ecological roles of assembling genomes for Bacillales and Clostridiales in coal seams. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnac053
doi: 10.1093/femsle/fnac053
pubmed: 36370448
Liu B, Wang Y, Li Y et al (2022) Improved formation of biogenic methane by cultivable bacteria in highly volatile bituminous coals. J Clean Prod 366:132900. https://doi.org/10.1016/j.jclepro.2022.132900
doi: 10.1016/j.jclepro.2022.132900
Longwell JP, Rubin ES, Wilson J (1995) Coal: energy for the future. Prog Energy Combust Sci 21:269–360. https://doi.org/10.1016/0360-1285(95)00007-0
doi: 10.1016/0360-1285(95)00007-0
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10
doi: 10.14806/ej.17.1.200
McKay LJ, Smith HJ, Barnhart EP et al (2022) Activity-based, genome-resolved metagenomics uncovers key populations and pathways involved in subsurface conversions of coal to methane. ISME J 16:915–926. https://doi.org/10.1038/s41396-021-01139-x
doi: 10.1038/s41396-021-01139-x
pubmed: 34689183
Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. https://doi.org/10.1038/s41467-019-10210-3
doi: 10.1038/s41467-019-10210-3
pubmed: 31097708
pmcid: 6522516
Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M (2021) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50:D801–D807. https://doi.org/10.1093/nar/gkab902
doi: 10.1093/nar/gkab902
pmcid: 8728197
Mikheenko A, Saveliev V, Gurevich A (2016) MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32:1088–1090. https://doi.org/10.1093/bioinformatics/btv697
doi: 10.1093/bioinformatics/btv697
pubmed: 26614127
Nguyen TTH, Kikuchi T, Tokunaga T et al (2021) Diversity of the tellurite resistance gene operon in Escherichia coli. Front Microbiol. https://doi.org/10.3389/fmicb.2021.681175
doi: 10.3389/fmicb.2021.681175
pubmed: 35003037
pmcid: 8733401
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834. https://doi.org/10.1101/gr.213959.116
doi: 10.1101/gr.213959.116
pubmed: 28298430
pmcid: 5411777
Page AJ, Cummins CA, Hunt M et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. https://doi.org/10.1093/bioinformatics/btv421
doi: 10.1093/bioinformatics/btv421
pubmed: 26198102
pmcid: 4817141
Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114
doi: 10.1101/gr.186072.114
pubmed: 25977477
pmcid: 4484387
Peng R-H, Xiong A-S, Xue Y et al (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955. https://doi.org/10.1111/j.1574-6976.2008.00127.x
doi: 10.1111/j.1574-6976.2008.00127.x
pubmed: 18662317
Podrzaj L, Burtscher J, Domig KJ (2022) Comparative genomics provides insights into genetic diversity of Clostridium tyrobutyricum and potential implications for late blowing defects in cheese. Front Microbiol 13:889551. https://doi.org/10.3389/fmicb.2022.889551
doi: 10.3389/fmicb.2022.889551
pubmed: 35722315
pmcid: 9201417
Rasmussen T (2023) The potassium efflux system Kef: Bacterial protection against toxic electrophilic compounds. Membranes (Basel) 13:465. https://doi.org/10.3390/membranes13050465
doi: 10.3390/membranes13050465
pubmed: 37233526
Reis AC, Cunha MV (2021) The open pan-genome architecture and virulence landscape of Mycobacterium bovis. Microb Genom. https://doi.org/10.1099/mgen.0.000664
doi: 10.1099/mgen.0.000664
pubmed: 34714230
pmcid: 8627212
Schauberger C, Thamdrup B, Lemonnier C et al (2024) Metagenome-assembled genomes of deep-sea sediments: changes in microbial functional potential lag behind redox transitions. ISME Commun. https://doi.org/10.1093/ismeco/ycad005
doi: 10.1093/ismeco/ycad005
pubmed: 38282644
pmcid: 10809760
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153
doi: 10.1093/bioinformatics/btu153
pubmed: 24642063
Setubal JC (2021) Metagenome-assembled genomes: concepts, analogies, and challenges. Biophys Rev 13:905–909. https://doi.org/10.1007/s12551-021-00865-y
doi: 10.1007/s12551-021-00865-y
pubmed: 35059016
pmcid: 8724365
Singh KN, Narzary D (2021) Heavy metal tolerance of bacterial isolates associated with overburden strata of an opencast coal mine of Assam (India). Environ Sci Pollut Res Int 28:63111–63126. https://doi.org/10.1007/s11356-021-15153-1
doi: 10.1007/s11356-021-15153-1
pubmed: 34218386
Singh NK, Wood JM, Patane J et al (2023) Characterization of metagenome-assembled genomes from the International Space Station. Microbiome 11:125. https://doi.org/10.1186/s40168-023-01545-7
doi: 10.1186/s40168-023-01545-7
pubmed: 37264385
pmcid: 10233975
Steinberg JP, Burd EM (2015) 238 - Other gram-negative and gram-variable Bacilli. In: Bennett JE, Dolin R, Blaser MJ (eds) Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th edn. Eighth Edition. W.B, Saunders, Philadelphia, pp 2667-2683.e4
doi: 10.1016/B978-1-4557-4801-3.00238-1
Strąpoć D, Picardal FW, Turich C, et al (2008) Methane-producing microbial community in a coal bed of the Illinois Basin. Appl Environ Microbiol 74:2424–2432. https://doi.org/10.1128/aem.02341-07
doi: 10.1128/aem.02341-07
pubmed: 18310416
Sukhija N, Kanaka KK, Goli RC et al (2023) The flight of chicken genomics and allied omics-a mini review. Ecol Genet Genom 29:100201. https://doi.org/10.1016/j.egg.2023.100201
doi: 10.1016/j.egg.2023.100201
Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477. https://doi.org/10.1016/j.mib.2008.09.006
doi: 10.1016/j.mib.2008.09.006
pubmed: 19086349
Uritskiy GV, DiRuggiero J, Taylor J (2018) MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158. https://doi.org/10.1186/s40168-018-0541-1
doi: 10.1186/s40168-018-0541-1
pubmed: 30219103
pmcid: 6138922
Varghese BR, Goh KGK, Desai D et al (2023) Variable resistance to zinc intoxication among Streptococcus agalactiae reveals a novel IS1381 insertion element within the zinc efflux transporter gene czcD. Front Immunol. https://doi.org/10.3389/fimmu.2023.1174695
doi: 10.3389/fimmu.2023.1174695
pubmed: 37304277
pmcid: 10251203
Vick SHW, Greenfield P, Tran-Dinh N et al (2018) The Coal seam microbiome reference set, a lingua franca for the microbial coal-to-methane community. Int J Coal Geol 186:41–50. https://doi.org/10.1016/j.coal.2017.12.003
doi: 10.1016/j.coal.2017.12.003
Vick SHW, Greenfield P, Tetu SG et al (2019) Genomic and phenotypic insights point to diverse ecological strategies by facultative anaerobes obtained from subsurface coal seams. Sci Rep 9:16186. https://doi.org/10.1038/s41598-019-52846-7
doi: 10.1038/s41598-019-52846-7
pubmed: 31700097
pmcid: 6838118
Viñas M, Sabaté J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Env Microbiol 71:7008–7018. https://doi.org/10.1128/AEM.71.11.7008-7018.2005
doi: 10.1128/AEM.71.11.7008-7018.2005
Wagner NJ (2021) Geology of coal. In: Encyclopedia of Geology. Elsevier, pp 745–761
Wang Y, Hou Y, Li H et al (2022) New insights into the coalification of lignite from lignin: a comparison of their chemical structures. Fuel (Lond) 326:125017. https://doi.org/10.1016/j.fuel.2022.125017
doi: 10.1016/j.fuel.2022.125017
Wilkes RA, Waldbauer J, Carroll A et al (2023) Complex regulation in a Comamonas platform for diverse aromatic carbon metabolism. Nat Chem Biol 19:651–662. https://doi.org/10.1038/s41589-022-01237-7
doi: 10.1038/s41589-022-01237-7
pubmed: 36747056
pmcid: 10154247
Wu Y-W, Simmons BA, Singer SW (2016) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607. https://doi.org/10.1093/bioinformatics/btv638
doi: 10.1093/bioinformatics/btv638
pubmed: 26515820
Xie B-B, Li M, Anantharaman K, Ravin NV (2021) Editorial: The uncultured microorganisms: novel technologies and applications. Front Microbiol. https://doi.org/10.3389/fmicb.2021.756287
doi: 10.3389/fmicb.2021.756287
pubmed: 35250903
pmcid: 8759106
Xu S, Huang H, Chen S et al (2024) Recovery of 1887 metagenome-assembled genomes from the South China Sea. Sci Data 11:197. https://doi.org/10.1038/s41597-024-03050-4
doi: 10.1038/s41597-024-03050-4
pubmed: 38351104
pmcid: 10864278
Yamanaka Y, Aizawa S-I, Yamamoto K (2022) The hdeD gene represses the expression of flagellum biosynthesis via LrhA in Escherichia coli K-12. J Bacteriol. https://doi.org/10.1128/jb.00420-21
doi: 10.1128/jb.00420-21
pubmed: 34694904
pmcid: 8765402
Yang T, Gao F (2022) High-quality pan-genome of Escherichia coli generated by excluding confounding and highly similar strains reveals an association between unique gene clusters and genomic islands. Brief Bioinform. https://doi.org/10.1093/bib/bbac283
doi: 10.1093/bib/bbac283
pubmed: 36347526
pmcid: 9851331
Yang S, Deng W, Li G et al (2024) Reference gene catalog and metagenome-assembled genomes from the gut microbiome reveal the microbial composition, antibiotic resistome, and adaptability of a lignocellulose diet in the giant panda. Environ Res 245:118090. https://doi.org/10.1016/j.envres.2023.118090
doi: 10.1016/j.envres.2023.118090
pubmed: 38163545
Yu X, Zhang W, Zhang G et al (2022) Arthrobacter antioxidans sp. nov., a blue pigment-producing species isolated from Mount Everest. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005624
doi: 10.1099/ijsem.0.005624
pubmed: 36748478
pmcid: 9558573
Yutani K, Matsuura Y, Naitow H, Joti Y (2018) Ion–ion interactions in the denatured state contribute to the stabilization of CutA1 proteins. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-25825-7
doi: 10.1038/s41598-018-25825-7
Zhang T, Zhang H (2022) Microbial consortia are needed to degrade soil pollutants. Microorganisms. https://doi.org/10.3390/microorganisms10020261
doi: 10.3390/microorganisms10020261
pubmed: 36677369
pmcid: 9866566
Zhang J, Tang H, Yu X et al (2024) Co-production of ferulic acid and p-coumaric acid from distiller grain by a putative feruloyl esterase discovered in metagenome assembled genomes. J Clean Prod 439:140814. https://doi.org/10.1016/j.jclepro.2024.140814
doi: 10.1016/j.jclepro.2024.140814
Zhao H, Gu Y, Liu X et al (2021) Reducing phenanthrene contamination in Trifolium repens L. with root-associated phenanthrene-degrading bacterium Diaphorobacter sp. Phe15. Front Microbiol. https://doi.org/10.3389/fmicb.2021.792698
doi: 10.3389/fmicb.2021.792698
pubmed: 35601203
pmcid: 8759106