Multiple NADPH-cytochrome P450 reductases from Lycoris radiata involved in Amaryllidaceae alkaloids biosynthesis.
Lycoris radiata
Amaryllidaceae alkaloids
Cytochrome P450
Functional characterization
NADPH-cytochrome P450 reductase
Journal
Plant molecular biology
ISSN: 1573-5028
Titre abrégé: Plant Mol Biol
Pays: Netherlands
ID NLM: 9106343
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
29
07
2024
accepted:
30
09
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Amaryllidaceae alkaloids (AAs), such as galanthamine and lycorine, are natural products of Lycoris radiata possessing various pharmacological activities including anti-acetylcholinesterase, anti-inflammatory, and antitumour activities. Elucidating the biosynthesis of these special AAs is crucial for understanding their production and potential modification for improved clinical application, of which cytochrome P450 enzymes catalyse the formation of key alkaloid skeletons and subsequent modification processes, with the NAPDH cytochrome P450 reductases (CPRs) serving as essential redox partners. This study identified three CPRs, LrCPR1, LrCPR2, and LrCPR3, encoding 700, 697 and 695 amino acids, respectively, which belong to Class II CPRs. The LrCPRs reduced cytochrome c and ferricyanide in an NADPH-dependent manner, and their activities all followed the typical Michaelis-Menten curve. In yeast, the co-expression of LrCPRs and CYP96T6 produced the galantamine-like alkaloid namely N-demethylnarwedine, suggesting that they support the catalytic activity of CYP96T6. Quantitative analysis of the transcriptional expression profiles showed that LrCPRs were expressed in all the examined tissues of L. radiata, and their gene expression patterns are consistent with other genes that may be involved in the biosynthetic pathway of AAs, including cinnamate 4-hydroxylase and phenylalanine ammonia-lyase. Our study firstly provides the functional characterization of LrCPRs in L. radiata, which will contribute to the discovery of biosynthetic pathways and heterologous production of AAs.
Identifiants
pubmed: 39485554
doi: 10.1007/s11103-024-01516-y
pii: 10.1007/s11103-024-01516-y
doi:
Substances chimiques
Amaryllidaceae Alkaloids
0
NADPH-Ferrihemoprotein Reductase
EC 1.6.2.4
Plant Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
120Subventions
Organisme : State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs
ID : 2060302
Organisme : Natural Science Foundation of Beijing Municipality
ID : No.2244066
Organisme : State Administration of Traditional Chinese Medicine of the People's Republic of China
ID : ZYYCXTD-D-202005
Organisme : Ministry of Science and Technology of the People's Republic of China
ID : 2020YFA0908000
Organisme : China Academy of Chinese Medical Sciences
ID : CI2023E002
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Akram MN, Verpoorte R, Pomahačová B (2021) Methods for the analysis of galanthamine and its extraction from laboratory to industrial scale. S Afr J Bot 136:51–64. https://doi.org/10.1016/j.sajb.2020.08.004
doi: 10.1016/j.sajb.2020.08.004
Bachhav B, de Rossi J, Llanos CD, Segatori L (2023) Cell factory engineering: challenges and opportunities for synthetic biology applications. Biotechnol Bioeng 120:2441–2459. https://doi.org/10.1002/bit.28365
doi: 10.1002/bit.28365
pubmed: 36859509
pmcid: 10440303
Berkov S, Georgieva L, Kondakova V, Atanassov A, Viladomat F, Bastida J, Codina C (2014) Plant sources of galanthamine: phytochemical and biotechnological aspects. Biotechnol Biotech Eq. 23:1170–1176. https://doi.org/10.1080/13102818.2009.10817633
doi: 10.1080/13102818.2009.10817633
Burris-Hiday SD, Scott EE (2023) Allosteric modulation of cytochrome P450 enzymes by the NADPH cytochrome P450 reductase FMN-containing domain. J Biol Chem 299:105112. https://doi.org/10.1016/j.jbc.2023.105112
doi: 10.1016/j.jbc.2023.105112
pubmed: 37517692
pmcid: 10481364
Chang YP, Ma X, Shao H, Zhao YM (2021) Total syntheses of galanthamine and lycoramine via a palladium-catalyzed cascade cyclization and late-stage reorganization of the cyclized skeleton. Org Lett 23:9659–9663. https://doi.org/10.1021/acs.orglett.1c03943
doi: 10.1021/acs.orglett.1c03943
pubmed: 34874174
Cheng J, Li G, Wang X, Yang C, Xu F, Qian Z, Ma X (2023) Cloning and functional characterization of NADPH-cytochrome P450 reductases in Aconitum Vilmorinianum. Molecules 28:7409. https://doi.org/10.3390/molecules28217409
doi: 10.3390/molecules28217409
pubmed: 37959828
pmcid: 10648341
Dai Z, Liu Y, Sun Z, Wang D, Qu G, Ma X, Fan F, Zhang L, Li S, Zhang X (2019) Identification of a novel cytochrome P450 enzyme that catalyzes the C-2α hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories. Metab Eng 51:70–78. https://doi.org/10.1016/j.ymben.2018.10.001
doi: 10.1016/j.ymben.2018.10.001
pubmed: 30339834
Desgagné-Penix I (2020) Biosynthesis of alkaloids in Amaryllidaceae plants: a review. Phytochem Rev 20:409–431. https://doi.org/10.1007/s11101-020-09678-5
doi: 10.1007/s11101-020-09678-5
Durairaj P, Li S (2022) Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. Eng Microbiol 2:100011. https://doi.org/10.1016/j.engmic.2022.100011
doi: 10.1016/j.engmic.2022.100011
Girhard M, Tieves F, Weber E, Smit MS, Urlacher VB (2013) Cytochrome P450 reductase from Candida Apicola: versatile redox partner for bacterial P450s. Appl Microbiol Biot 97:1625–1635. https://doi.org/10.1007/s00253-012-4026-z
doi: 10.1007/s00253-012-4026-z
Howes MJ, Houghton PJ (2003) Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem Be 75:513–527. https://doi.org/10.1016/s0091-3057(03)00128-x
doi: 10.1016/s0091-3057(03)00128-x
Hubbard PA, Xia C, Shen AL, Kim JP (2021) Structural and kinetic investigations of the carboxy terminal of NADPH-cytochrome P450 oxidoreductase. Arch Biochem Biophys 701:108792. https://doi.org/10.1016/j.abb.2021.108792
doi: 10.1016/j.abb.2021.108792
pubmed: 33556357
pmcid: 8020834
Jayawardena TU, Merindol N, Liyanage NS, Desgagne-Penix I (2023) Unveiling Amaryllidaceae alkaloids: from biosynthesis to antiviral potential - a review. Nat Prod Rep 36:1462–1488. https://doi.org/10.1039/d3np00044c
doi: 10.1039/d3np00044c
Jin Z, Yao G (2019) Amaryllidaceae and Sceletium alkaloids. Nat Prod Rep 36:1462–1488. https://doi.org/10.1039/c8np00055g
doi: 10.1039/c8np00055g
pubmed: 30707215
Kilgore MB, Augustin MM, May GD, Crow JA, Kutchan TM (2016) CYP96T1 of Narcissus sp. aff. pseudonarcissus catalyzes formation of the para-para’ C-C phenol couple in the Amaryllidaceae alkaloids. Front Plant Sci 7:225. https://doi.org/10.3389/fpls.2016.00225
doi: 10.3389/fpls.2016.00225
pubmed: 26941773
pmcid: 4766306
Lamb DC, Waterman MR (2013) Unusual properties of the cytochrome P450 superfamily. Philos T R Soc B 368:20120434. https://doi.org/10.1098/rstb.2012.0434
doi: 10.1098/rstb.2012.0434
Lee (2010) Ethanol extract of Lycoris radiata induces cell death in B16F10 melanoma via p38-mediated AP-1 activation. Oncol Rep 24:473–478. https://doi.org/10.3892/or_00000881
Masi M, Di Lecce R, Cimmino A, Evidente A (2020) Advances in the hemical and biological characterization of Amaryllidaceae alkaloids and natural analogues isolated in the last decade. Molecules 25:5261. https://doi.org/10.3390/molecules25235621
doi: 10.3390/molecules25235621
McLean KJ, Luciakova D, Belcher J, Tee KL, Munro AW (2015) Biological diversity of cytochrome P450 redox partner systems. Adv Exp Med Biol 851:299–317. https://doi.org/10.1007/978-3-319-16009-2_11
doi: 10.1007/978-3-319-16009-2_11
pubmed: 26002740
Mehta N, Meng Y, Zare R, Kamenetsky-Goldstein R, Sattely E (2023) A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes. https://doi.org/10.1101/2023.05.12.540595 . bioRxiv
Park JW, Reed JR, Brignac-Huber LM, Backes WL (2014) Cytochrome P450 system proteins reside in different regions of the endoplasmic reticulum. Biochem J 464:241–249. https://doi.org/10.1042/BJ20140787
doi: 10.1042/BJ20140787
pubmed: 25236845
Renault H, Bassard JE, Hamberger B, Werck-Reichhart D (2014) Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Curr Opin Plant Biol 19:27–34. https://doi.org/10.1016/j.pbi.2014.03.004
doi: 10.1016/j.pbi.2014.03.004
pubmed: 24709279
Ro DK, Ehlting J, Douglas CJ (2002) Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar. Plant Physiol 130:1837–1851. https://doi.org/10.1104/pp.008011
doi: 10.1104/pp.008011
pubmed: 12481067
pmcid: 166695
Roy M, Liang L, Xiao X, Feng P, Ye M, Liu J (2018) Lycorine: a prospective natural lead for anticancer drug discovery. Biomed Pharmacother 107:615–624. https://doi.org/10.1016/j.biopha.2018.07.147
doi: 10.1016/j.biopha.2018.07.147
pubmed: 30114645
pmcid: 7127747
Santos GS, Sinoti SBP, de Almeida FTC, Silveira D, Simeoni LA, Gomes-Copeland KKP (2020) Use of galantamine in the treatment of Alzheimer’s disease and strategies to optimize its biosynthesis using the in vitro culture technique. Plant Cell Tiss Org 143:13–29. https://doi.org/10.1007/s11240-020-01911-5
doi: 10.1007/s11240-020-01911-5
Singh A, Massicotte MA, Garand A, Tousignant L, Ouellette V, Berube G, Desgagne-Penix I (2018) Cloning and characterization of norbelladine synthase catalyzing the first committed reaction in Amaryllidaceae alkaloid biosynthesis. BMC Plant Biol 18:338. https://doi.org/10.1186/s12870-018-1570-4
doi: 10.1186/s12870-018-1570-4
pubmed: 30526483
pmcid: 6286614
Zhang Y, Ma L, Su P, Huang L, Gao W (2023) Cytochrome P450s in plant terpenoid biosynthesis: discovery, characterization and metabolic engineering. Crit Rev Biotechnol 43:1–21. https://doi.org/10.1080/07388551.2021.2003292
doi: 10.1080/07388551.2021.2003292
pubmed: 34865579
Zhao H, Wang J, Tang Q, Mo C, Guo J, Chen T, Lin H, Tang J, Guo L, Huang L, Ma X (2018a) Functional expression of two NADPH-cytochrome P450 reductases from Siraitia Grosvenorii. Int J Biol Macromol 120:1515–1524. https://doi.org/10.1016/j.ijbiomac.2018.09.128
doi: 10.1016/j.ijbiomac.2018.09.128
pubmed: 30253176
Zhao Y, Fan J, Wang C, Feng X, Li C (2018b) Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae. Bioresource Technol 257:339–343. https://doi.org/10.1016/j.biortech.2018.02.096
doi: 10.1016/j.biortech.2018.02.096