An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
11 2019
Historique:
received: 15 10 2016
accepted: 19 02 2018
revised: 16 01 2018
pubmed: 29 4 2018
medline: 6 5 2020
entrez: 29 4 2018
Statut: ppublish

Résumé

A number of genetic studies have identified rare protein-coding DNA variations associated with autism spectrum disorder (ASD), a neurodevelopmental disorder with significant genetic etiology and heterogeneity. In contrast, the contributions of functional, regulatory genetic variations that occur in the extensive non-protein-coding regions of the genome remain poorly understood. Here we developed a genome-wide analysis to identify the rare single nucleotide variants (SNVs) that occur in non-coding regions and determined the regulatory function and evolutionary conservation of these variants. Using publicly available datasets and computational predictions, we identified SNVs within putative regulatory regions in promoters, transcription factor binding sites, and microRNA genes and their target sites. Overall, we found that the regulatory variants in ASD cases were enriched in ASD-risk genes and genes involved in fetal neurodevelopment. As with previously reported coding mutations, we found an enrichment of the regulatory variants associated with dysregulation of neurodevelopmental and synaptic signaling pathways. Among these were several rare inherited SNVs found in the mature sequence of microRNAs predicted to affect the regulation of ASD-risk genes. We show a paternally inherited miR-873-5p variant with altered binding affinity for several risk-genes including NRXN2 and CNTNAP2 putatively overlay maternally inherited loss-of-function coding variations in NRXN1 and CNTNAP2 to likely increase the genetic liability in an idiopathic ASD case. Our analysis pipeline provides a new resource for identifying loss-of-function regulatory DNA variations that may contribute to the genetic etiology of complex disorders.

Identifiants

pubmed: 29703944
doi: 10.1038/s41380-018-0049-x
pii: 10.1038/s41380-018-0049-x
doi:

Substances chimiques

DNA, Intergenic 0
MIRN873 microRNA, human 0
MicroRNAs 0
DNA 9007-49-2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1707-1719

Références

O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.
doi: 10.1038/nature10989 pubmed: 22495309 pmcid: 22495309
Parikshak Neelroop N, Luo R, Zhang A, Won H, Lowe Jennifer K, Chandran V, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155:1008–21.
doi: 10.1016/j.cell.2013.10.031 pubmed: 24267887 pmcid: 24267887
Willsey AJ, Sanders Stephan J, Li M, Dong S, Tebbenkamp Andrew T, Muhle Rebecca A, et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell. 2013;155:997–1007.
doi: 10.1016/j.cell.2013.10.020 pubmed: 24267886 pmcid: 24267886
An JY, Claudianos C. Genetic heterogeneity in autism: from single gene to a pathway perspective. Neurosci Biobehav Rev. 2016;68:442–53.
doi: 10.1016/j.neubiorev.2016.06.013 pubmed: 27317861 pmcid: 27317861
Devanna P, Chen XS, Ho J, Gajewski D, Smith SD, Gialluisi A et al. Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders. Mol Psychiatry. 2017. Advance online publication. https://doi.org/10.1038/mp.2017.30 .
Yuen RK, Merico D, Cao H, Pellecchia G, Alipanahi B, Thiruvahindrapuram B, et al. Genome-wide characteristics of de novo mutations in autism. NPJ Genom Med. 2016;1:160271–1602710.
doi: 10.1038/npjgenmed.2016.27 pubmed: 27525107 pmcid: 27525107
An JY, Cristino AS, Zhao Q, Edson J, Williams SM, Ravine D, et al. Towards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach. Transl Psychiatry. 2014;4:e394.
doi: 10.1038/tp.2014.38 pubmed: 24893065 pmcid: 24893065
Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22:1748–59.
doi: 10.1101/gr.136127.111 pubmed: 22955986 pmcid: 22955986
Takata A, Ionita-Laza I, Gogos JA, Xu B, Karayiorgou M. De novo synonymous mutations in regulatory elements contribute to the genetic etiology of autism and schizophrenia. Neuron. 2016;89:940–7.
doi: 10.1016/j.neuron.2016.02.024 pubmed: 26938441 pmcid: 26938441
Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.
doi: 10.1038/nature13908 pubmed: 25363768 pmcid: 25363768
O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–9.
doi: 10.1038/ng.835 pubmed: 21572417 pmcid: 21572417
Forrest ARR, Kawaji H, Rehli M, Kenneth Baillie J, de Hoon MJL, Haberle V, et al. A promoter-level mammalian expression atlas. Nature. 2014;507:462–70.
doi: 10.1038/nature13182 pubmed: 24670764 pmcid: 24670764
Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
doi: 10.1038/nature11247
Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508:199–206.
doi: 10.1038/nature13185 pubmed: 24695229 pmcid: 24695229
Khurana E, Fu Y, Colonna V, Mu XJ, Kang HM, Lappalainen T, et al. Integrative annotation of variants from 1092 humans: application to cancer genomics. Science. 2013;342:1235587.
doi: 10.1126/science.1235587 pubmed: 24092746 pmcid: 24092746
Sabarinathan R, Wenzel A, Novotny P, Tang X, Kalari KR, Gorodkin J. Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on RNA secondary structure and miRNA target sites. PLoS ONE. 2014;9:e82699.
doi: 10.1371/journal.pone.0082699 pubmed: 24416147 pmcid: 24416147
Vaishnavi V, Manikandan M, Munirajan AK. Mining the 3′UTR of autism-implicated genes for SNPs perturbing microRNA regulation. Genom Proteom Bioinf. 2014;12:92–104.
doi: 10.1016/j.gpb.2014.01.003
Turner Tychele N, Hormozdiari F, Duyzend Michael H, McClymont Sarah A, Hook Paul W, Iossifov I, et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am J Human Genet. 2016;98:58–74.
doi: 10.1016/j.ajhg.2015.11.023
Yao P, Lin P, Gokoolparsadh A, Assareh A, Thang MW, Voineagu I. Coexpression networks identify brain region-specific enhancer RNAs in the human brain. Nat Neurosci. 2015;18:1168–74.
doi: 10.1038/nn.4063 pubmed: 26167905 pmcid: 26167905
Taylor LJ, Maybery MT, Wray J, Ravine D, Hunt A, Whitehouse AJ. Brief report: do the nature of communication impairments in autism spectrum disorders relate to the broader autism phenotype in parents? J Autism Dev Disorders. 2013. Advance online publication. https://doi.org/10.1038/mp.2017.30 .
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.
doi: 10.1093/bioinformatics/btp698 pubmed: 20080505 pmcid: 20080505
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
doi: 10.1101/gr.107524.110 pubmed: 20644199 pmcid: 20644199
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:1–7.
doi: 10.1093/nar/gkp829
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.
doi: 10.1038/nature19057 pubmed: 27535533 pmcid: 27535533
Anney R, Klei L, Pinto D, Almeida J, Bacchelli E, Baird G, et al. Individual common variants exert weak effects on the risk for autism spectrum disorders. Hum Mol Genet. 2012;21:4781–92.
doi: 10.1093/hmg/dds301 pubmed: 22843504 pmcid: 22843504
Yuen RK, Thiruvahindrapuram B, Merico D, Walker S, Tammimies K, Hoang N, et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med. 2015;21:185–91.
doi: 10.1038/nm.3792 pubmed: 25621899 pmcid: 25621899
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.
doi: 10.1038/ng.2892 pubmed: 24487276 pmcid: 24487276
Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–61.
doi: 10.1038/nature12787 pubmed: 24670763 pmcid: 24670763
Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, et al. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 2014;42:D142–7.
doi: 10.1093/nar/gkt997 pubmed: 24194598 pmcid: 24194598
Cristino AS, Williams SM, Hawi Z, An JY, Bellgrove MA, Schwartz CE, et al. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry. 2013;19:294–301.
doi: 10.1038/mp.2013.16 pubmed: 23439483 pmcid: 23439483
Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, et al. DNA-binding specificities of human transcription factors. Cell. 2013;152:327–39.
doi: 10.1016/j.cell.2012.12.009 pubmed: 23332764 pmcid: 23332764
Boyer La, Plath K, Zeitlinger J, Brambrink T, Medeiros La, Lee TI, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441:349–53.
doi: 10.1038/nature04733 pubmed: 16625203 pmcid: 16625203
Bruce AW, Donaldson IJ, Wood IC, Yerbury Sa, Sadowski MI, Chapman M et al. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci USA. 2004; 101: 10458–63.
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133:1106–17.
doi: 10.1016/j.cell.2008.04.043
Gu P, Goodwin B, Chung AC, Xu X, Wheeler Da, Price RR, et al. Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development orphan nuclear receptor LRH-1 is required to maintain oct4 expression at the epiblast stage of embryonic development. Mol Cell Biol. 2005;25:3492–505.
doi: 10.1128/MCB.25.9.3492-3505.2005 pubmed: 15831456 pmcid: 15831456
Jin VX, O’Geen H, Iyengar S, Green R, Farnham PJ. Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches. Genome Res. 2007;17:807–17.
doi: 10.1101/gr.6006107 pubmed: 17567999 pmcid: 17567999
Loh Y-H, Wu Q, Chew J-L, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–40.
doi: 10.1038/ng1760
Minoguchi S, Taniguchi Y, Kato H, Okazaki T, Strobl LJ, Zimber-Strobl U, et al. RBP-L, a transcription factor related to RBP-Jkappa. Mol Cell Biol. 1997;17:2679–87.
doi: 10.1128/MCB.17.5.2679 pubmed: 9111338 pmcid: 9111338
Mizugishi K, Aruga J, Nakata K, Mikoshiba K. Molecular properties of Zic proteins as transcriptional regulators and their relationship to GLI proteins. J Biol Chem. 2001;276:2180–8.
doi: 10.1074/jbc.M004430200 pubmed: 11053430 pmcid: 11053430
Zhou Q, Chipperfield H, Melton Da, Wong WH. A gene regulatory network in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the USA. 2007; 104: 16438–43.
Gordon DB, Nekludova L, McCallum S, Fraenkel E. TAMO: a flexible, object-oriented framework for analyzing transcriptional regulation using DNA-sequence motifs. Bioinformatics. 2005;21:3164–5.
doi: 10.1093/bioinformatics/bti481 pubmed: 15905282 pmcid: 15905282
Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–157.
doi: 10.1093/nar/gkq1027 pubmed: 21037258 pmcid: 21037258
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5:R1.
doi: 10.1186/gb-2003-5-1-r1 pubmed: 14709173 pmcid: 14709173
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–17.
doi: 10.1261/rna.5248604 pubmed: 15383676 pmcid: 15383676
Bailey TL. Discovering novel sequence motifs with MEME. Curr Protoc Bioinf. 2002;Chapter 2:Unit 2 4.
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015;4. https://doi.org/10.7554/eLife.05005 .
Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss La, et al. SFARIGene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism. 2013;4:36.
doi: 10.1186/2040-2392-4-36 pubmed: 24090431 pmcid: 24090431
Li J, Shi M, Ma Z, Zhao S, Euskirchen G, Ziskin J, et al. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders. Mol Syst Biol. 2014;10:774–774.
doi: 10.15252/msb.20145487 pubmed: 25549968 pmcid: 25549968
Wani S, Cloonan N. Profiling direct mRNA-microRNA interactions using synthetic biotinylated microRNA-duplexes. BioRxiv. 2014: 0–11. https://doi.org/10.1101/005439 .
Cristino AS, Barchuk AR, Freitas FC, Narayanan RK, Biergans SD, Zhao Z, et al. Neuroligin-associated microRNA-932 targets actin and regulates memory in the honeybee. Nat Commun. 2014;5:5529.
doi: 10.1038/ncomms6529 pubmed: 25409902 pmcid: 25409902
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
doi: 10.1093/bioinformatics/btu170 pubmed: 24695404 pmcid: 24695404
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36–R36.
doi: 10.1186/gb-2013-14-4-r36 pubmed: 23618408 pmcid: 23618408
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
doi: 10.1186/s13059-014-0550-8 pubmed: 25516281 pmcid: 25516281
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23:257–8.
doi: 10.1093/bioinformatics/btl567
Danecek P, Auton A, Abecasis G, Albers Ca, Banks E, DePristo Ma, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
doi: 10.1093/bioinformatics/btr330 pubmed: 21653522 pmcid: 21653522
Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics. 2011;27:718–9.
doi: 10.1093/bioinformatics/btq671 pubmed: 21208982 pmcid: 21208982
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
doi: 10.1093/bioinformatics/btp352 pubmed: 19505943 pmcid: 19505943
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
doi: 10.1093/bioinformatics/btq033 pubmed: 2832824 pmcid: 2832824
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.
doi: 10.1093/bioinformatics/btq675 pubmed: 21149340 pmcid: 21149340
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–3.
doi: 10.1093/bioinformatics/btp101 pubmed: 19237447 pmcid: 19237447
Chen F, Venugopal V, Murray B, Rudenko G. The structure of neurexin 1α reveals features promoting a role as synaptic organizer. Structure. 2011;19:779–89.
doi: 10.1016/j.str.2011.03.012 pubmed: 21620716 pmcid: 21620716
Gai X, Xie H, Perin J, Takahashi N, Murphy K, Wenocur A, et al. Rare structural variation of synapse and neurotransmission genes in autism. Mol Psychiatry. 2011;17:402–11.
doi: 10.1038/mp.2011.10 pubmed: 21358714 pmcid: 21358714
Gazzellone MJ, Zhou X, Lionel AC, Uddin M, Thiruvahindrapuram B, Liang S, et al. Copy number variation in Han Chinese individuals with autism spectrum disorder. J Neurodev Disord. 2014;6:34–34.
doi: 10.1186/1866-1955-6-34 pubmed: 25170348 pmcid: 25170348
Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94.
doi: 10.1016/j.ajhg.2014.03.018 pubmed: 24768552 pmcid: 24768552
Kousoulidou L, Moutafi M, Nicolaides P, Hadjiloizou S, Christofi C, Paradesiotou A, et al. Screening of 50 cypriot patients with autism spectrum disorders or autistic features using 400 K custom array-CGH. Biomed Res Int. 2013;2013:843027.
doi: 10.1155/2013/843027 pubmed: 24260744 pmcid: 24260744
Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88.
doi: 10.1016/j.ajhg.2007.12.009 pubmed: 18252227 pmcid: 18252227
Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015;87:1215–33.
doi: 10.1016/j.neuron.2015.09.016 pubmed: 26402605 pmcid: 26402605
Homma S, Shimada T, Hikake T, Yaginuma H. Expression pattern of LRR and Ig domain-containing protein (LRRIG protein) in the early mouse embryo. Gene Expr Patterns. 2009;9:1–26.
doi: 10.1016/j.gep.2008.09.004 pubmed: 18848646 pmcid: 18848646
Allen Brain Institute. BrainSpan: Atlas of the Developing Human Brain. 2011.
Südhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455:903–11.
doi: 10.1038/nature07456 pubmed: 18923512 pmcid: 18923512
Bacon C, Rappold GA. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Human Genet. 2012;131:1687–98.
doi: 10.1007/s00439-012-1193-z
Wheelwright S, Auyeung B, Allison C, Baron-Cohen S. Defining the broader, medium and narrow autism phenotype among parents using the Autism Spectrum Quotient (AQ). Mol Autism. 2010;1:10.
doi: 10.1186/2040-2392-1-10 pubmed: 20678260 pmcid: 20678260
Krumm N, O’Roak BJ, Shendure J, Eichler EE. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 2014;37:95–105.
doi: 10.1016/j.tins.2013.11.005 pubmed: 24387789 pmcid: 24387789
UniProt. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.
doi: 10.1093/nar/gku989
Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–8.
doi: 10.1093/nar/gki387 pubmed: 15980494 pmcid: 15980494
Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci. 2014;8:276.
pubmed: 25309321 pmcid: 25309321
Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10:e1004580.
doi: 10.1371/journal.pgen.1004580 pubmed: 25188300 pmcid: 25188300
Consortium UK, Walter K, Min JL, Huang J, Crooks L, Memari Y, et al. The UK10K project identifies rare variants in health and disease. Nature. 2015;526:82–90.
doi: 10.1038/nature14962
Deciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.
doi: 10.1038/nature21062
Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.
doi: 10.1016/j.cell.2017.05.038 pubmed: 28622505 pmcid: 28622505
Vilariño-Güell C, Wider C, Ross Oa, Jasinska-Myga B, Kachergus J, Cobb Sa, et al. LINGO1 and LINGO2 variants are associated with essential tremor and Parkinson disease. Neurogenetics. 2010;11:401–8.
doi: 10.1007/s10048-010-0241-x pubmed: 20369371 pmcid: 20369371
de Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol. 2017;35:872–8.
doi: 10.1038/nbt.3947 pubmed: 28829439 pmcid: 28829439
Rodenas-Cuadrado P, Ho J, Vernes SC. Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Human Genet. 2014;22:171–8.
doi: 10.1038/ejhg.2013.100
Araujo DJ, Anderson AG, Berto S, Runnels W, Harper M, Ammanuel S, et al. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes Dev. 2015;29:2081–96.
doi: 10.1101/gad.267989.115 pubmed: 26494785 pmcid: 26494785
Bonora E, Graziano C, Minopoli F, Bacchelli E, Magini P, Diquigiovanni C, et al. Maternally inherited genetic variants of CADPS2 are present in autism spectrum disorders and intellectual disability patients. EMBO Mol Med. 2014;6:795–809.
doi: 10.1002/emmm.201303235 pubmed: 24737869 pmcid: 24737869
Dong F, Jiang J, McSweeney C, Zou D, Liu L, Mao Y. Deletion of CTNNB1 in inhibitory circuitry contributes to autism-associated behavioral defects. Hum Mol Genet. 2016;25:2738–51.
pubmed: 27131348 pmcid: 27131348
Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, et al. Most genetic risk for autism resides with common variation. Nat Genet. 2014;46:881–5.
doi: 10.1038/ng.3039 pubmed: 25038753 pmcid: 25038753
Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X, et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell. 2012;151:1431–42.
doi: 10.1016/j.cell.2012.11.019 pubmed: 23260136 pmcid: 23260136
McRae JF, Clayton S, Fitzgerald TW, Kaplanis J, Prigmore E, Rajan D, et al. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.
doi: 10.1038/nature21062
Akbarian S, Liu C, Knowles JA, Vaccarino FM, Farnham PJ, Crawford GE, et al. The PsychENCODE project. Nat Neurosci. 2015;18:1707–12.
doi: 10.1038/nn.4156 pubmed: 26605881 pmcid: 26605881
CommonMind Consortium. CommonMind Consortium Knowledge Portal. https://www.nimhgenetics.org/acknowledgements.php

Auteurs

Sarah M Williams (SM)

University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia.
Queensland Brain Institute, University of Queensland, Brisbane, Australia.

Joon Yong An (JY)

Queensland Brain Institute, University of Queensland, Brisbane, Australia.
Department of Psychiatry, University of California San Francisco, San Francisco, USA.
Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, USA.

Janette Edson (J)

Queensland Brain Institute, University of Queensland, Brisbane, Australia.

Michelle Watts (M)

Queensland Brain Institute, University of Queensland, Brisbane, Australia.

Valentine Murigneux (V)

University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia.

Andrew J O Whitehouse (AJO)

Telethon Kids Institute, University of Western Australia, Perth, Australia.
Cooperative Research Centre for Living with Autism, Brisbane, Australia.

Colin J Jackson (CJ)

Research School of Chemistry, Australian National University, Canberra, Australia.

Mark A Bellgrove (MA)

Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia.

Alexandre S Cristino (AS)

University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia. a.cristino@uq.edu.au.

Charles Claudianos (C)

Queensland Brain Institute, University of Queensland, Brisbane, Australia. charles.claudianos@anu.edu.au.
Centre for Mental Health Research CMHR, Australian National University, Canberra, Australia. charles.claudianos@anu.edu.au.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH