An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder.
Autism Spectrum Disorder
/ genetics
DNA
/ genetics
DNA, Intergenic
/ genetics
Genetic Predisposition to Disease
Genetic Variation
/ genetics
Genome
Genome-Wide Association Study
/ methods
Humans
MicroRNAs
/ genetics
Mutation
/ genetics
Polymorphism, Single Nucleotide
/ genetics
Promoter Regions, Genetic
/ genetics
Regulatory Elements, Transcriptional
/ genetics
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
11 2019
11 2019
Historique:
received:
15
10
2016
accepted:
19
02
2018
revised:
16
01
2018
pubmed:
29
4
2018
medline:
6
5
2020
entrez:
29
4
2018
Statut:
ppublish
Résumé
A number of genetic studies have identified rare protein-coding DNA variations associated with autism spectrum disorder (ASD), a neurodevelopmental disorder with significant genetic etiology and heterogeneity. In contrast, the contributions of functional, regulatory genetic variations that occur in the extensive non-protein-coding regions of the genome remain poorly understood. Here we developed a genome-wide analysis to identify the rare single nucleotide variants (SNVs) that occur in non-coding regions and determined the regulatory function and evolutionary conservation of these variants. Using publicly available datasets and computational predictions, we identified SNVs within putative regulatory regions in promoters, transcription factor binding sites, and microRNA genes and their target sites. Overall, we found that the regulatory variants in ASD cases were enriched in ASD-risk genes and genes involved in fetal neurodevelopment. As with previously reported coding mutations, we found an enrichment of the regulatory variants associated with dysregulation of neurodevelopmental and synaptic signaling pathways. Among these were several rare inherited SNVs found in the mature sequence of microRNAs predicted to affect the regulation of ASD-risk genes. We show a paternally inherited miR-873-5p variant with altered binding affinity for several risk-genes including NRXN2 and CNTNAP2 putatively overlay maternally inherited loss-of-function coding variations in NRXN1 and CNTNAP2 to likely increase the genetic liability in an idiopathic ASD case. Our analysis pipeline provides a new resource for identifying loss-of-function regulatory DNA variations that may contribute to the genetic etiology of complex disorders.
Identifiants
pubmed: 29703944
doi: 10.1038/s41380-018-0049-x
pii: 10.1038/s41380-018-0049-x
doi:
Substances chimiques
DNA, Intergenic
0
MIRN873 microRNA, human
0
MicroRNAs
0
DNA
9007-49-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1707-1719Références
O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.
doi: 10.1038/nature10989
pubmed: 22495309
pmcid: 22495309
Parikshak Neelroop N, Luo R, Zhang A, Won H, Lowe Jennifer K, Chandran V, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155:1008–21.
doi: 10.1016/j.cell.2013.10.031
pubmed: 24267887
pmcid: 24267887
Willsey AJ, Sanders Stephan J, Li M, Dong S, Tebbenkamp Andrew T, Muhle Rebecca A, et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell. 2013;155:997–1007.
doi: 10.1016/j.cell.2013.10.020
pubmed: 24267886
pmcid: 24267886
An JY, Claudianos C. Genetic heterogeneity in autism: from single gene to a pathway perspective. Neurosci Biobehav Rev. 2016;68:442–53.
doi: 10.1016/j.neubiorev.2016.06.013
pubmed: 27317861
pmcid: 27317861
Devanna P, Chen XS, Ho J, Gajewski D, Smith SD, Gialluisi A et al. Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders. Mol Psychiatry. 2017. Advance online publication. https://doi.org/10.1038/mp.2017.30 .
Yuen RK, Merico D, Cao H, Pellecchia G, Alipanahi B, Thiruvahindrapuram B, et al. Genome-wide characteristics of de novo mutations in autism. NPJ Genom Med. 2016;1:160271–1602710.
doi: 10.1038/npjgenmed.2016.27
pubmed: 27525107
pmcid: 27525107
An JY, Cristino AS, Zhao Q, Edson J, Williams SM, Ravine D, et al. Towards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach. Transl Psychiatry. 2014;4:e394.
doi: 10.1038/tp.2014.38
pubmed: 24893065
pmcid: 24893065
Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22:1748–59.
doi: 10.1101/gr.136127.111
pubmed: 22955986
pmcid: 22955986
Takata A, Ionita-Laza I, Gogos JA, Xu B, Karayiorgou M. De novo synonymous mutations in regulatory elements contribute to the genetic etiology of autism and schizophrenia. Neuron. 2016;89:940–7.
doi: 10.1016/j.neuron.2016.02.024
pubmed: 26938441
pmcid: 26938441
Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.
doi: 10.1038/nature13908
pubmed: 25363768
pmcid: 25363768
O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–9.
doi: 10.1038/ng.835
pubmed: 21572417
pmcid: 21572417
Forrest ARR, Kawaji H, Rehli M, Kenneth Baillie J, de Hoon MJL, Haberle V, et al. A promoter-level mammalian expression atlas. Nature. 2014;507:462–70.
doi: 10.1038/nature13182
pubmed: 24670764
pmcid: 24670764
Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
doi: 10.1038/nature11247
Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508:199–206.
doi: 10.1038/nature13185
pubmed: 24695229
pmcid: 24695229
Khurana E, Fu Y, Colonna V, Mu XJ, Kang HM, Lappalainen T, et al. Integrative annotation of variants from 1092 humans: application to cancer genomics. Science. 2013;342:1235587.
doi: 10.1126/science.1235587
pubmed: 24092746
pmcid: 24092746
Sabarinathan R, Wenzel A, Novotny P, Tang X, Kalari KR, Gorodkin J. Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on RNA secondary structure and miRNA target sites. PLoS ONE. 2014;9:e82699.
doi: 10.1371/journal.pone.0082699
pubmed: 24416147
pmcid: 24416147
Vaishnavi V, Manikandan M, Munirajan AK. Mining the 3′UTR of autism-implicated genes for SNPs perturbing microRNA regulation. Genom Proteom Bioinf. 2014;12:92–104.
doi: 10.1016/j.gpb.2014.01.003
Turner Tychele N, Hormozdiari F, Duyzend Michael H, McClymont Sarah A, Hook Paul W, Iossifov I, et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am J Human Genet. 2016;98:58–74.
doi: 10.1016/j.ajhg.2015.11.023
Yao P, Lin P, Gokoolparsadh A, Assareh A, Thang MW, Voineagu I. Coexpression networks identify brain region-specific enhancer RNAs in the human brain. Nat Neurosci. 2015;18:1168–74.
doi: 10.1038/nn.4063
pubmed: 26167905
pmcid: 26167905
Taylor LJ, Maybery MT, Wray J, Ravine D, Hunt A, Whitehouse AJ. Brief report: do the nature of communication impairments in autism spectrum disorders relate to the broader autism phenotype in parents? J Autism Dev Disorders. 2013. Advance online publication. https://doi.org/10.1038/mp.2017.30 .
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.
doi: 10.1093/bioinformatics/btp698
pubmed: 20080505
pmcid: 20080505
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
doi: 10.1101/gr.107524.110
pubmed: 20644199
pmcid: 20644199
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:1–7.
doi: 10.1093/nar/gkp829
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.
doi: 10.1038/nature19057
pubmed: 27535533
pmcid: 27535533
Anney R, Klei L, Pinto D, Almeida J, Bacchelli E, Baird G, et al. Individual common variants exert weak effects on the risk for autism spectrum disorders. Hum Mol Genet. 2012;21:4781–92.
doi: 10.1093/hmg/dds301
pubmed: 22843504
pmcid: 22843504
Yuen RK, Thiruvahindrapuram B, Merico D, Walker S, Tammimies K, Hoang N, et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med. 2015;21:185–91.
doi: 10.1038/nm.3792
pubmed: 25621899
pmcid: 25621899
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.
doi: 10.1038/ng.2892
pubmed: 24487276
pmcid: 24487276
Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–61.
doi: 10.1038/nature12787
pubmed: 24670763
pmcid: 24670763
Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, et al. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 2014;42:D142–7.
doi: 10.1093/nar/gkt997
pubmed: 24194598
pmcid: 24194598
Cristino AS, Williams SM, Hawi Z, An JY, Bellgrove MA, Schwartz CE, et al. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry. 2013;19:294–301.
doi: 10.1038/mp.2013.16
pubmed: 23439483
pmcid: 23439483
Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, et al. DNA-binding specificities of human transcription factors. Cell. 2013;152:327–39.
doi: 10.1016/j.cell.2012.12.009
pubmed: 23332764
pmcid: 23332764
Boyer La, Plath K, Zeitlinger J, Brambrink T, Medeiros La, Lee TI, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441:349–53.
doi: 10.1038/nature04733
pubmed: 16625203
pmcid: 16625203
Bruce AW, Donaldson IJ, Wood IC, Yerbury Sa, Sadowski MI, Chapman M et al. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci USA. 2004; 101: 10458–63.
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133:1106–17.
doi: 10.1016/j.cell.2008.04.043
Gu P, Goodwin B, Chung AC, Xu X, Wheeler Da, Price RR, et al. Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development orphan nuclear receptor LRH-1 is required to maintain oct4 expression at the epiblast stage of embryonic development. Mol Cell Biol. 2005;25:3492–505.
doi: 10.1128/MCB.25.9.3492-3505.2005
pubmed: 15831456
pmcid: 15831456
Jin VX, O’Geen H, Iyengar S, Green R, Farnham PJ. Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches. Genome Res. 2007;17:807–17.
doi: 10.1101/gr.6006107
pubmed: 17567999
pmcid: 17567999
Loh Y-H, Wu Q, Chew J-L, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–40.
doi: 10.1038/ng1760
Minoguchi S, Taniguchi Y, Kato H, Okazaki T, Strobl LJ, Zimber-Strobl U, et al. RBP-L, a transcription factor related to RBP-Jkappa. Mol Cell Biol. 1997;17:2679–87.
doi: 10.1128/MCB.17.5.2679
pubmed: 9111338
pmcid: 9111338
Mizugishi K, Aruga J, Nakata K, Mikoshiba K. Molecular properties of Zic proteins as transcriptional regulators and their relationship to GLI proteins. J Biol Chem. 2001;276:2180–8.
doi: 10.1074/jbc.M004430200
pubmed: 11053430
pmcid: 11053430
Zhou Q, Chipperfield H, Melton Da, Wong WH. A gene regulatory network in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the USA. 2007; 104: 16438–43.
Gordon DB, Nekludova L, McCallum S, Fraenkel E. TAMO: a flexible, object-oriented framework for analyzing transcriptional regulation using DNA-sequence motifs. Bioinformatics. 2005;21:3164–5.
doi: 10.1093/bioinformatics/bti481
pubmed: 15905282
pmcid: 15905282
Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–157.
doi: 10.1093/nar/gkq1027
pubmed: 21037258
pmcid: 21037258
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5:R1.
doi: 10.1186/gb-2003-5-1-r1
pubmed: 14709173
pmcid: 14709173
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–17.
doi: 10.1261/rna.5248604
pubmed: 15383676
pmcid: 15383676
Bailey TL. Discovering novel sequence motifs with MEME. Curr Protoc Bioinf. 2002;Chapter 2:Unit 2 4.
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015;4. https://doi.org/10.7554/eLife.05005 .
Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss La, et al. SFARIGene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism. 2013;4:36.
doi: 10.1186/2040-2392-4-36
pubmed: 24090431
pmcid: 24090431
Li J, Shi M, Ma Z, Zhao S, Euskirchen G, Ziskin J, et al. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders. Mol Syst Biol. 2014;10:774–774.
doi: 10.15252/msb.20145487
pubmed: 25549968
pmcid: 25549968
Wani S, Cloonan N. Profiling direct mRNA-microRNA interactions using synthetic biotinylated microRNA-duplexes. BioRxiv. 2014: 0–11. https://doi.org/10.1101/005439 .
Cristino AS, Barchuk AR, Freitas FC, Narayanan RK, Biergans SD, Zhao Z, et al. Neuroligin-associated microRNA-932 targets actin and regulates memory in the honeybee. Nat Commun. 2014;5:5529.
doi: 10.1038/ncomms6529
pubmed: 25409902
pmcid: 25409902
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
doi: 10.1093/bioinformatics/btu170
pubmed: 24695404
pmcid: 24695404
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36–R36.
doi: 10.1186/gb-2013-14-4-r36
pubmed: 23618408
pmcid: 23618408
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
doi: 10.1186/s13059-014-0550-8
pubmed: 25516281
pmcid: 25516281
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23:257–8.
doi: 10.1093/bioinformatics/btl567
Danecek P, Auton A, Abecasis G, Albers Ca, Banks E, DePristo Ma, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
doi: 10.1093/bioinformatics/btr330
pubmed: 21653522
pmcid: 21653522
Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics. 2011;27:718–9.
doi: 10.1093/bioinformatics/btq671
pubmed: 21208982
pmcid: 21208982
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
doi: 10.1093/bioinformatics/btp352
pubmed: 19505943
pmcid: 19505943
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
doi: 10.1093/bioinformatics/btq033
pubmed: 2832824
pmcid: 2832824
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.
doi: 10.1093/bioinformatics/btq675
pubmed: 21149340
pmcid: 21149340
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–3.
doi: 10.1093/bioinformatics/btp101
pubmed: 19237447
pmcid: 19237447
Chen F, Venugopal V, Murray B, Rudenko G. The structure of neurexin 1α reveals features promoting a role as synaptic organizer. Structure. 2011;19:779–89.
doi: 10.1016/j.str.2011.03.012
pubmed: 21620716
pmcid: 21620716
Gai X, Xie H, Perin J, Takahashi N, Murphy K, Wenocur A, et al. Rare structural variation of synapse and neurotransmission genes in autism. Mol Psychiatry. 2011;17:402–11.
doi: 10.1038/mp.2011.10
pubmed: 21358714
pmcid: 21358714
Gazzellone MJ, Zhou X, Lionel AC, Uddin M, Thiruvahindrapuram B, Liang S, et al. Copy number variation in Han Chinese individuals with autism spectrum disorder. J Neurodev Disord. 2014;6:34–34.
doi: 10.1186/1866-1955-6-34
pubmed: 25170348
pmcid: 25170348
Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94.
doi: 10.1016/j.ajhg.2014.03.018
pubmed: 24768552
pmcid: 24768552
Kousoulidou L, Moutafi M, Nicolaides P, Hadjiloizou S, Christofi C, Paradesiotou A, et al. Screening of 50 cypriot patients with autism spectrum disorders or autistic features using 400 K custom array-CGH. Biomed Res Int. 2013;2013:843027.
doi: 10.1155/2013/843027
pubmed: 24260744
pmcid: 24260744
Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88.
doi: 10.1016/j.ajhg.2007.12.009
pubmed: 18252227
pmcid: 18252227
Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015;87:1215–33.
doi: 10.1016/j.neuron.2015.09.016
pubmed: 26402605
pmcid: 26402605
Homma S, Shimada T, Hikake T, Yaginuma H. Expression pattern of LRR and Ig domain-containing protein (LRRIG protein) in the early mouse embryo. Gene Expr Patterns. 2009;9:1–26.
doi: 10.1016/j.gep.2008.09.004
pubmed: 18848646
pmcid: 18848646
Allen Brain Institute. BrainSpan: Atlas of the Developing Human Brain. 2011.
Südhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455:903–11.
doi: 10.1038/nature07456
pubmed: 18923512
pmcid: 18923512
Bacon C, Rappold GA. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Human Genet. 2012;131:1687–98.
doi: 10.1007/s00439-012-1193-z
Wheelwright S, Auyeung B, Allison C, Baron-Cohen S. Defining the broader, medium and narrow autism phenotype among parents using the Autism Spectrum Quotient (AQ). Mol Autism. 2010;1:10.
doi: 10.1186/2040-2392-1-10
pubmed: 20678260
pmcid: 20678260
Krumm N, O’Roak BJ, Shendure J, Eichler EE. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 2014;37:95–105.
doi: 10.1016/j.tins.2013.11.005
pubmed: 24387789
pmcid: 24387789
UniProt. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.
doi: 10.1093/nar/gku989
Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–8.
doi: 10.1093/nar/gki387
pubmed: 15980494
pmcid: 15980494
Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci. 2014;8:276.
pubmed: 25309321
pmcid: 25309321
Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10:e1004580.
doi: 10.1371/journal.pgen.1004580
pubmed: 25188300
pmcid: 25188300
Consortium UK, Walter K, Min JL, Huang J, Crooks L, Memari Y, et al. The UK10K project identifies rare variants in health and disease. Nature. 2015;526:82–90.
doi: 10.1038/nature14962
Deciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.
doi: 10.1038/nature21062
Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.
doi: 10.1016/j.cell.2017.05.038
pubmed: 28622505
pmcid: 28622505
Vilariño-Güell C, Wider C, Ross Oa, Jasinska-Myga B, Kachergus J, Cobb Sa, et al. LINGO1 and LINGO2 variants are associated with essential tremor and Parkinson disease. Neurogenetics. 2010;11:401–8.
doi: 10.1007/s10048-010-0241-x
pubmed: 20369371
pmcid: 20369371
de Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol. 2017;35:872–8.
doi: 10.1038/nbt.3947
pubmed: 28829439
pmcid: 28829439
Rodenas-Cuadrado P, Ho J, Vernes SC. Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Human Genet. 2014;22:171–8.
doi: 10.1038/ejhg.2013.100
Araujo DJ, Anderson AG, Berto S, Runnels W, Harper M, Ammanuel S, et al. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes Dev. 2015;29:2081–96.
doi: 10.1101/gad.267989.115
pubmed: 26494785
pmcid: 26494785
Bonora E, Graziano C, Minopoli F, Bacchelli E, Magini P, Diquigiovanni C, et al. Maternally inherited genetic variants of CADPS2 are present in autism spectrum disorders and intellectual disability patients. EMBO Mol Med. 2014;6:795–809.
doi: 10.1002/emmm.201303235
pubmed: 24737869
pmcid: 24737869
Dong F, Jiang J, McSweeney C, Zou D, Liu L, Mao Y. Deletion of CTNNB1 in inhibitory circuitry contributes to autism-associated behavioral defects. Hum Mol Genet. 2016;25:2738–51.
pubmed: 27131348
pmcid: 27131348
Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, et al. Most genetic risk for autism resides with common variation. Nat Genet. 2014;46:881–5.
doi: 10.1038/ng.3039
pubmed: 25038753
pmcid: 25038753
Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X, et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell. 2012;151:1431–42.
doi: 10.1016/j.cell.2012.11.019
pubmed: 23260136
pmcid: 23260136
McRae JF, Clayton S, Fitzgerald TW, Kaplanis J, Prigmore E, Rajan D, et al. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.
doi: 10.1038/nature21062
Akbarian S, Liu C, Knowles JA, Vaccarino FM, Farnham PJ, Crawford GE, et al. The PsychENCODE project. Nat Neurosci. 2015;18:1707–12.
doi: 10.1038/nn.4156
pubmed: 26605881
pmcid: 26605881
CommonMind Consortium. CommonMind Consortium Knowledge Portal. https://www.nimhgenetics.org/acknowledgements.php