Targeting Trypanothione Reductase of Leishmanial major to Fight Against Cutaneous Leishmaniasis.


Journal

Infectious disorders drug targets
ISSN: 2212-3989
Titre abrégé: Infect Disord Drug Targets
Pays: United Arab Emirates
ID NLM: 101269158

Informations de publication

Date de publication:
2019
Historique:
received: 29 01 2018
revised: 13 03 2018
accepted: 27 04 2018
pubmed: 8 5 2018
medline: 13 5 2020
entrez: 8 5 2018
Statut: ppublish

Résumé

1.2-2.0 million cases of leishmaniasis occur annually throughout the world. The available drugs like Amphotericin B, antimonials and miltefosine are unable to fulfill the need due to less effectiveness, high toxicity, resistance, high cost and complex route of administration. Leishmania survives inside the macrophages through different evasion mechanisms; one of that is activation of its trypanothione reductase enzyme which neutralizes the reactive oxygen species generated inside the macrophages to kill the parasites. This enzyme is unique and absent in human, therefore in this study I targeted it for screening of new inhibitors to fight against leishmaniasis. Homology modeling of Leishmania major trypanothione reductase was performed using Phyre2 server. The homology based modelled protein was validated with PROCHECK analysis. Ligplot analysis was performed to predict the active residues inside the binding pocket. Further, virtual screening of ligand library containing 113 ligands from PubChem Bioassay was performed against the target using AutoDock Vina Tool. Top five ligands showed best binding affinity. The molecule having PubChem CID: 10553746 showed highest binding affinity of -11.3 kcal/mol. Over all this molecule showed highest binding affinity and moderate number of hydrogen bonds. Hopefully, this molecule will be able to block the activity of target enzyme, trypanothione reductase of Leishmania major effectively and may work as new molecules to fight against cutaneous leishmanaisis. This study will help the researchers to identify the new molecules which can block the activity of leishmanial-trypanothione reductase, a novel enzyme of trypanosomatids. These screened inhibitors may also be effective not only in leishmaniasis but also other trypanosomatid-mediated infectious diseases.

Sections du résumé

BACKGROUND BACKGROUND
1.2-2.0 million cases of leishmaniasis occur annually throughout the world. The available drugs like Amphotericin B, antimonials and miltefosine are unable to fulfill the need due to less effectiveness, high toxicity, resistance, high cost and complex route of administration. Leishmania survives inside the macrophages through different evasion mechanisms; one of that is activation of its trypanothione reductase enzyme which neutralizes the reactive oxygen species generated inside the macrophages to kill the parasites. This enzyme is unique and absent in human, therefore in this study I targeted it for screening of new inhibitors to fight against leishmaniasis.
METHODS METHODS
Homology modeling of Leishmania major trypanothione reductase was performed using Phyre2 server. The homology based modelled protein was validated with PROCHECK analysis. Ligplot analysis was performed to predict the active residues inside the binding pocket. Further, virtual screening of ligand library containing 113 ligands from PubChem Bioassay was performed against the target using AutoDock Vina Tool.
RESULTS RESULTS
Top five ligands showed best binding affinity. The molecule having PubChem CID: 10553746 showed highest binding affinity of -11.3 kcal/mol. Over all this molecule showed highest binding affinity and moderate number of hydrogen bonds. Hopefully, this molecule will be able to block the activity of target enzyme, trypanothione reductase of Leishmania major effectively and may work as new molecules to fight against cutaneous leishmanaisis.
CONCLUSION CONCLUSIONS
This study will help the researchers to identify the new molecules which can block the activity of leishmanial-trypanothione reductase, a novel enzyme of trypanosomatids. These screened inhibitors may also be effective not only in leishmaniasis but also other trypanosomatid-mediated infectious diseases.

Identifiants

pubmed: 29732996
pii: IDDT-EPUB-90162
doi: 10.2174/1871526518666180502141849
doi:

Substances chimiques

Antiprotozoal Agents 0
Ligands 0
NADH, NADPH Oxidoreductases EC 1.6.-
trypanothione reductase EC 1.8.1.12

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

388-393

Informations de copyright

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.

Auteurs

Abdul Aziz A Bin Dukhyil (AAAB)

Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah- 11952, Saudi Arabia.

Articles similaires

alpha-Synuclein Humans Animals Mice Lewy Body Disease
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Mutational analysis of Phanerochaete chrysosporium´s purine transporter.

Mariana Barraco-Vega, Manuel Sanguinetti, Gabriela da Rosa et al.
1.00
Phanerochaete Fungal Proteins Purines Aspergillus nidulans DNA Mutational Analysis

Structural basis for molecular assembly of fucoxanthin chlorophyll

Koji Kato, Yoshiki Nakajima, Jian Xing et al.
1.00
Diatoms Photosystem I Protein Complex Chlorophyll Binding Proteins Cryoelectron Microscopy Light-Harvesting Protein Complexes

Classifications MeSH