Endogenous opioid system dysregulation in depression: implications for new therapeutic approaches.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
04 2019
04 2019
Historique:
received:
08
01
2018
accepted:
25
05
2018
revised:
11
04
2018
pubmed:
30
6
2018
medline:
4
12
2019
entrez:
30
6
2018
Statut:
ppublish
Résumé
The United States is in the midst of an opioid addiction and overdose crisis precipitated and exacerbated by use of prescription opioid medicines. The majority of opioid prescriptions are dispensed to patients with comorbid mood disorders including major depressive disorder (MDD). A growing body of research indicates that the endogenous opioid system is directly involved in the regulation of mood and is dysregulated in MDD. This involvement of the endogenous opioid system may underlie the disproportionate use of opioids among patients with mood disorders. Emerging approaches to address endogenous opioid dysregulation in MDD may yield novel therapeutics that have a low or absent risk of abuse and addiction relative to µ-opioid agonists. Moreover, agents targeting the endogenous opioid system would be expected to yield clinical benefits qualitatively different from conventional monaminergic antidepressants. The development of safe and effective agents to treat MDD-associated endogenous opioid dysregulation may represent a distinct and currently underappreciated means of addressing treatment resistant depression with the potential to attenuate the on-going opioid crisis.
Identifiants
pubmed: 29955162
doi: 10.1038/s41380-018-0117-2
pii: 10.1038/s41380-018-0117-2
pmc: PMC6310672
mid: NIHMS970895
doi:
Substances chimiques
Analgesics, Opioid
0
Prescription Drugs
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
576-587Subventions
Organisme : NIMH NIH HHS
ID : K23 MH108674
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH086858
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH108534
Pays : United States
Organisme : NIMH NIH HHS
ID : R34 MH101371
Pays : United States
Références
WHO. Depression and other common mental disorders: global health estimates. Geneva: WHO; 2017.
American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). 5th ed. Washington, DC: American Psychiatric Association; 2013.
doi: 10.1176/appi.books.9780890425596
Burcusa SL, Iacono WG. Risk for recurrence in depression. Clin Psychol Rev. 2007;27:959–85.
pubmed: 17448579
pmcid: 2169519
doi: 10.1016/j.cpr.2007.02.005
Rush AJ, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am J Psychiatry. 2006;163:1905–17.
pubmed: 17074942
doi: 10.1176/ajp.2006.163.11.1905
Warden D, Rush AJ, Trivedi MH, Fava M, Wisniewski SR. The STAR*D Project results: a comprehensive review of findings. Curr Psychiatry Rep. 2007;9:449–59.
pubmed: 18221624
doi: 10.1007/s11920-007-0061-3
Coplan JD, Aaronson CJ, Panthangi V, Kim Y. Treating comorbid anxiety and depression: Psychosocial and pharmacological approaches. World J Psychiatry. 2015;5:366–78.
pubmed: 26740928
pmcid: 4694550
doi: 10.5498/wjp.v5.i4.366
Reynolds CF 3rd, et al. Maintenance treatment of major depression in old age. N Engl J Med. 2006;354:1130–8.
pubmed: 16540613
doi: 10.1056/NEJMoa052619
Davis MA, Lin LA, Liu H, Sites BD. Prescription opioid use among adults with mental health disorders in the United States. J Am Board Fam Med. 2017;30:407–17.
pubmed: 28720623
doi: 10.3122/jabfm.2017.04.170112
Berrocoso E. Opiates as antidepressants. Curr Pharm Des. 2009;15:1612.
pubmed: 19442177
doi: 10.2174/138161209788168100
Tenore PL. Psychotherapeutic benefits of opioid agonist therapy. J Addict Dis. 2008;27:49–65.
pubmed: 18956529
doi: 10.1080/10550880802122646
Meunier JC, et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature. 1995;377:532–5.
pubmed: 7566152
doi: 10.1038/377532a0
Delay-Goyet P, Zajac JM, Javoy-Agid F, Agid Y, Roques BP. Regional distribution of mu, delta and kappa opioid receptors in human brains from controls and parkinsonian subjects. Brain Res. 1987;414:8–14.
pubmed: 3040166
doi: 10.1016/0006-8993(87)91321-7
Kuhar MJ, Pert CB, Snyder SH. Regional distribution of opiate receptor binding in monkey and human brain. Nature. 1973;245:447–50.
pubmed: 4127185
doi: 10.1038/245447a0
Oroszi G, Goldman D. Alcoholism: genes and mechanisms. Pharmacogenomics. 2004;5:1037–48.
pubmed: 15584875
doi: 10.1517/14622416.5.8.1037
Peckys D, Landwehrmeyer GB. Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience. 1999;88:1093–135.
pubmed: 10336124
doi: 10.1016/S0306-4522(98)00251-6
Peng J, Sarkar S, Chang SL. Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend. 2012;124:223–8.
pubmed: 22356890
pmcid: 3366045
doi: 10.1016/j.drugalcdep.2012.01.013
Pilapil C, Welner S, Magnan J, Zamir N, Quirion R. Mu opioid receptor binding sites in human brain. NIDA Res Monogr. 1986;75:319–22.
pubmed: 2828981
Bagnol D, Mansour A, Akil H, Watson SJ, Localization of mu and kappa opioid receptors in rat colon by antibodies to the cloned opioid receptors. Analgesia. 1995;1:264–7.
doi: 10.3727/107156995819563267
Mansour A, Fox CA, Akil H, Watson SJ. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 1995;18:22–9.
pubmed: 7535487
doi: 10.1016/0166-2236(95)93946-U
Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ. Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci. 1987;7:2445–64.
pubmed: 3039080
pmcid: 6568954
Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ. Anatomy of CNS opioid receptors. Trends Neurosci. 1988;11:308–14.
pubmed: 2465635
doi: 10.1016/0166-2236(88)90093-8
Le Merrer J, Becker JA, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009;89:1379–412.
pubmed: 19789384
doi: 10.1152/physrev.00005.2009
Bodnar RJ. Endogenous opiates and behavior: 2012. Peptides. 2013;50:55–95.
pubmed: 24126281
doi: 10.1016/j.peptides.2013.10.001
Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22:3306–11.
pubmed: 11978804
doi: 10.1523/JNEUROSCI.22-09-03306.2002
pmcid: 6758373
Pecina S, Berridge KC. Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci. 2005;25:11777–86.
pubmed: 16354936
doi: 10.1523/JNEUROSCI.2329-05.2005
pmcid: 6726018
Sinchak K, Micevych PE. <Sinchak-2001.pdf>. J Neurosci. 2001;21:5723–9.
pubmed: 11466444
doi: 10.1523/JNEUROSCI.21-15-05723.2001
pmcid: 6762652
Eisenberger NI. The pain of social disconnection: examining the shared neural underpinnings of physical and social pain. Nat Rev Neurosci. 2012;13:421–34.
pubmed: 22551663
doi: 10.1038/nrn3231
Hsu DT, et al. Response of the mu-opioid system to social rejection and acceptance. Mol Psychiatry. 2013;18:1211–7.
pubmed: 23958960
pmcid: 3814222
doi: 10.1038/mp.2013.96
Panksepp J. Neuroscience. Feeling the pain of social loss. Science. 2003;302:237–9.
pubmed: 14551424
doi: 10.1126/science.1091062
Panksepp J, Herman B, Conner R, Bishop P, Scott JP. The biology of social attachments: opiates alleviate separation distress. Biol Psychiatry. 1978;13:607–18.
pubmed: 83167
Panksepp J, Herman BH, Vilberg T, Bishop P, DeEskinazi FG. Endogenous opioids and social behavior. Neurosci Biobehav Rev. 1980;4:473–87.
pubmed: 6258111
doi: 10.1016/0149-7634(80)90036-6
Aceto MD, May EL, Harris LS, Bowman ER, Cook CD. Pharmacological studies with a nonpeptidic, delta-opioid (-)-(1R,5R,9R)-5,9-dimethyl-2’-hydroxy-2-(6-hydroxyhexyl)-6,7-benzomorphan hydrochloride ((-)-NIH 11082). Eur J Pharmacol. 2007;566:88–93.
pubmed: 17434480
pmcid: 2994320
doi: 10.1016/j.ejphar.2007.03.008
Ananthan S. Opioid ligands with mixed mu/delta opioid receptor interactions: an emerging approach to novel analgesics. AAPS J. 2006;8:E118–125.
pubmed: 16584118
pmcid: 2751430
doi: 10.1208/aapsj080114
Yoon MH, et al. Roles of opioid receptor subtypes on the antinociceptive effect of intrathecal sildenafil in the formalin test of rats. Neurosci Lett. 2008;441:125–8.
pubmed: 18585861
doi: 10.1016/j.neulet.2008.06.011
Peppin JF, Raffa RB. Delta opioid agonists: a concise update on potential therapeutic applications. J Clin Pharm Ther. 2015;40:155–66.
pubmed: 25726896
doi: 10.1111/jcpt.12244
Chavkin C. The therapeutic potential of kappa-opioids for treatment of pain and addiction. Neuropsychopharmacology. 2011;36:369–70.
pubmed: 21116263
doi: 10.1038/npp.2010.137
DeHaven-Hudkins DL, Dolle RE. Peripherally restricted opioid agonists as novel analgesic agents. Curr Pharm Des. 2004;10:743–57.
pubmed: 15032700
doi: 10.2174/1381612043453036
Dogra S, Yadav PN. Biased agonism at kappa opioid receptors: Implication in pain and mood disorders. Eur J Pharmacol. 2015;763(Pt B):184–90.
pubmed: 26164787
doi: 10.1016/j.ejphar.2015.07.018
Benecke H, Lotts T, Stander S. Investigational drugs for pruritus. Expert Opin Investig Drugs. 2013;22:1167–79.
pubmed: 23815605
doi: 10.1517/13543784.2013.813932
Ciccocioppo R, Cippitelli A, Economidou D, Fedeli A, Massi M. Nociceptin/orphanin FQ acts as a functional antagonist of corticotropin-releasing factor to inhibit its anorectic effect. Physiol Behav. 2004;82:63–8.
pubmed: 15234592
doi: 10.1016/j.physbeh.2004.04.035
Mogil JS, Pasternak GW. The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev. 2001;53:381–415.
pubmed: 11546835
Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–2.
pubmed: 559941
doi: 10.1038/266730a0
Berrocoso E, et al. Active behaviours produced by antidepressants and opioids in the mouse tail suspension test. Int J Neuropsychopharmacol. 2013;16:151–62.
pubmed: 22217458
doi: 10.1017/S1461145711001842
Rojas-Corrales MO, Berrocoso E, Gilbert-Rahola J, Mico JA. Antidepressant-like effects of tramadol and other central analgesics with activity on monoamines reuptake, in helpless rats. Life Sci. 2002;72:143–52.
pubmed: 12417248
doi: 10.1016/S0024-3205(02)02220-8
Zomkowski AD, Santos AR, Rodrigues AL. Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming test. Neurosci Lett. 2005;381:279–83.
pubmed: 15896484
doi: 10.1016/j.neulet.2005.02.026
Browne CA, van Nest DS, Lucki I. Antidepressant-like effects of buprenorphine in rats are strain dependent. Behav Brain Res. 2015;278:385–92.
pubmed: 25453747
doi: 10.1016/j.bbr.2014.10.014
Falcon E, Maier K, Robinson SA, Hill-Smith TE, Lucki I. Effects of buprenorphine on behavioral tests for antidepressant and anxiolytic drugs in mice. Psychopharmacology. 2014;232:907–15.
pubmed: 25178815
pmcid: 4326609
doi: 10.1007/s00213-014-3723-y
Hegadoren KM, O’Donnell T, Lanius R, Coupland NJ, Lacaze-Masmonteil N. The role of beta-endorphin in the pathophysiology of major depression. Neuropeptides. 2009;43:341–53.
pubmed: 19647870
doi: 10.1016/j.npep.2009.06.004
Haj-Mirzaian A, et al. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors. Can J Physiol Pharmacol. 2016;94:599–612.
pubmed: 27010380
doi: 10.1139/cjpp-2015-0429
Kastin AJ, Scollan EL, Ehrensing RH, Schally AV, Coy DH. Enkephalin and other peptides reduce passiveness. Pharmacol Biochem Behav. 1978;9:515–9.
pubmed: 733838
doi: 10.1016/0091-3057(78)90051-5
Filliol D, et al. Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet. 2000;25:195–200.
pubmed: 10835636
doi: 10.1038/76061
Jutkiewicz EM. The antidepressant -like effects of delta-opioid receptor agonists. Mol Interv. 2006;6:162–9.
pubmed: 16809477
doi: 10.1124/mi.6.3.7
Nestler EJ, Carlezon WA Jr. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–9.
pubmed: 16566899
doi: 10.1016/j.biopsych.2005.09.018
Torregrossa MM, et al. The delta-opioid receptor agonist (+)BW373U86 regulates BDNF mRNA expression in rats. Neuropsychopharmacology. 2004;29:649–59.
pubmed: 14647482
doi: 10.1038/sj.npp.1300345
Duman RS. Synaptic plasticicy and mood disorders. Mol Psychiatry. 2002;7:S29–S34.
pubmed: 11986993
doi: 10.1038/sj.mp.4001016
Vaidya VA. Depression—emerging insights from neurobiology. Br Med Bull. 2001;57:61–79.
pubmed: 11719924
doi: 10.1093/bmb/57.1.61
Pfeiffer A, Brantl V, Herz A, Emrich HM. Psychotomimesis mediated by kappa opiate receptors. Science. 1986;233:774–6.
pubmed: 3016896
doi: 10.1126/science.3016896
Carlezon WA Jr., Beguin C, Knoll AT, Cohen BM. Kappa-opioid ligands in the study and treatment of mood disorders. Pharmacol Ther. 2009;12:334–43.
doi: 10.1016/j.pharmthera.2009.05.008
Mague SD, et al. Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther. 2003;305:323–30.
pubmed: 12649385
doi: 10.1124/jpet.102.046433
Carlezon WA Jr., et al. Depressive-like effects of the kappa-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats. J Pharmacol Exp Ther. 2006;316:440–7.
pubmed: 16223871
doi: 10.1124/jpet.105.092304
Todtenkopf MS, Marcus JF, Portoghese PS, Carlezon WA Jr. Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats. Psychopharmacology. 2004;172:463–70.
pubmed: 14727002
doi: 10.1007/s00213-003-1680-y
Carr GV, et al. Antidepressant-like effects of kappa-opioid receptor antagonists in Wistar Kyoto rats. Neuropsychopharmacology. 2010;35:752–63.
pubmed: 19924112
doi: 10.1038/npp.2009.183
McLaughlin JP, Shuang L, Valdez J, Chavkin TA, Chavkin C. Social defeat stress-induced behavioral responses are mediated by the endogenous kappa opioid system. Neuropsychopharmacology. 2006;31:1241.
pubmed: 16123746
doi: 10.1038/sj.npp.1300872
Chartoff E, et al. Blockade of kappa opioid receptors attenuates the development of depressive-like behaviors induced by cocaine withdrawal in rats. Neuropharmacology. 2012;62:167–76.
pubmed: 21736885
doi: 10.1016/j.neuropharm.2011.06.014
Gavioli EC, Calo G. Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs. Pharmacol Ther. 2013;140:10–25.
pubmed: 23711793
doi: 10.1016/j.pharmthera.2013.05.008
Gavioli EC, Calo G. Antidepressant- and anxiolytic-like effects of nociceptin/orphanin FQ receptor ligands. Naunyn Schmiede Arch Pharmacol. 2006;372:319–30.
doi: 10.1007/s00210-006-0035-8
Jenck F, et al. Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc Natl Acad Sci USA. 1997;94:14854–8.
pubmed: 9405703
doi: 10.1073/pnas.94.26.14854
pmcid: 25127
Gavioli EC, et al. Blockade of nociceptin/orphanin FQ-NOP receptor signalling produces antidepressant-like effects: pharmacological and genetic evidences from the mouse forced swimming test. Eur J Neurosci. 2003;17:1987–90.
pubmed: 12752799
doi: 10.1046/j.1460-9568.2003.02603.x
Redrobe JP, Calo G, Regoli D, Quirion R. Nociceptin receptor antagonists display antidepressant-like properties in the mouse forced swimming test. Naunyn Schmiede Arch Pharmacol. 2002;365:164–7.
doi: 10.1007/s00210-001-0511-0
Rizzi A, et al. Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrah ydro-5H-benzocyclohepten-5-ol]: in vivo studies. J Pharmacol Exp Ther. 2007;321:968–74.
pubmed: 17329551
doi: 10.1124/jpet.106.116780
Post A, et al. A selective nociceptin receptor antagonist to treat depression: evidence from preclinical and clinical studies. Neuropsychopharmacology. 2016;41:1803–12.
pubmed: 26585287
doi: 10.1038/npp.2015.348
Pfeiffer A, Pasi A, Mehraein P, Herz A. Opiate receptor binding sites in human brain. Brain Res. 1982;248:87–96.
pubmed: 6289997
doi: 10.1016/0006-8993(82)91150-7
Zubieta JK, et al. Regulation of human affective responses by anterior cingulate and limbic mu-opioid neurotransmission. Arch Gen Psychiatry. 2003;60:1145–53.
pubmed: 14609890
doi: 10.1001/archpsyc.60.11.1145
Kennedy SE, Koeppe RA, Young EA, Zubieta JK. Dysregulation of endogenous opioid emotion regulation circuitry in major depression in women. Arch Gen Psychiatry. 2006;63:1199–208.
pubmed: 17088500
doi: 10.1001/archpsyc.63.11.1199
Prossin AR, Love TM, Koeppe RA, Zubieta JK, Silk KR. Dysregulation of regional endogenous opioid function in borderline personality disorder. Am J Psychiatry. 2010;167:925–33.
pubmed: 20439388
doi: 10.1176/appi.ajp.2010.09091348
pmcid: 6863154
Pecina M, et al. Association between placebo-activated neural systems and antidepressant responses: neurochemistry of placebo effects in major depression. JAMA Psychiatry. 2015;72:1087–94.
pubmed: 26421634
pmcid: 4758856
doi: 10.1001/jamapsychiatry.2015.1335
Amanzio M, Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J Neurosci. 1999;19:484–94.
pubmed: 9870976
pmcid: 6782391
doi: 10.1523/JNEUROSCI.19-01-00484.1999
Levine JD, Gordon NC, Fields HL. The mechanism of placebo analgesia. Lancet. 1978;2:654–7.
pubmed: 80579
doi: 10.1016/S0140-6736(78)92762-9
Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia—imaging a shared neuronal network. Science. 2002;295:1737–40.
pubmed: 11834781
doi: 10.1126/science.1067176
Zubieta JK, et al. Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J Neurosci. 2005;25:7754–62.
pubmed: 16120776
pmcid: 6725254
doi: 10.1523/JNEUROSCI.0439-05.2005
Kross E, Berman MG, Mischel W, Smith EE, Wager TD. Social rejection shares somatosensory representations with physical pain. Proc Natl Acad Sci USA. 2011;108:6270–5.
pubmed: 21444827
doi: 10.1073/pnas.1102693108
pmcid: 3076808
Hsu DT, et al. It still hurts: altered endogenous opioid activity in the brain during social rejection and acceptance in major depressive disorder. Mol Psychiatry. 2015;20:193–200.
pubmed: 25600108
pmcid: 4469367
doi: 10.1038/mp.2014.185
Bergen AW, et al. Mu opioid receptor gene variants: lack of association with alcohol dependence. Mol Psychiatry. 1997;2:490–4.
pubmed: 9399694
doi: 10.1038/sj.mp.4000331
Kroslak T, et al. The single nucleotide polymorphism A118G alters functional properties of the human mu opioid receptor. J Neurochem. 2007;103:77–87.
pubmed: 17877633
Zhang Y, Wang D, Johnson AD, Papp AC, Sadee W. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem. 2005;280:32618–24.
pubmed: 16046395
doi: 10.1074/jbc.M504942200
Pecina M, Love T, Stohler CS, Goldman D, Zubieta JK. Effects of the Mu opioid receptor polymorphism (OPRM1 A118G) on pain regulation, placebo effects and associated personality trait measures. Neuropsychopharmacology. 2015;40:957–65.
pubmed: 25308352
doi: 10.1038/npp.2014.272
Chong RY, et al. The mu-opioid receptor polymorphism A118G predicts cortisol responses to naloxone and stress. Neuropsychopharmacology. 2006;31:204–11.
pubmed: 16123758
doi: 10.1038/sj.npp.1300856
Way BM, Taylor SE, Eisenberger NI. Variation in the mu-opioid receptor gene (OPRM1) is associated with dispositional and neural sensitivity to social rejection. Proc Natl Acad Sci USA. 2009;106:15079–84.
pubmed: 19706472
doi: 10.1073/pnas.0812612106
pmcid: 2736434
Knoll AT, et al. Kappa opioid receptor signaling in the basolateral amygdala regulates conditioned fear and anxiety in rats. Biol Psychiatry. 2011;70:425–33.
pubmed: 21531393
pmcid: 3150294
doi: 10.1016/j.biopsych.2011.03.017
Peckys D, Landwehrmeyer GB. Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience. 1999;88:1093–135.
pubmed: 10336124
doi: 10.1016/S0306-4522(98)00251-6
Madar I, et al. Imaging of delta opioid receptors in human brain by N1’-([11C]methyl)naltrindole and PET. Synapse. 1996;24:19–28.
pubmed: 9046073
doi: 10.1002/(SICI)1098-2396(199609)24:1<19::AID-SYN3>3.0.CO;2-J
Richards EM, et al. A randomized, placebo-controlled pilot trial of the delta opioid receptor agonist AZD2327 in anxious depression. Psychopharmacology. 2016;233:1119–30.
pubmed: 26728893
pmcid: 5103283
doi: 10.1007/s00213-015-4195-4
Gelernter J, Kranzler HR. Variant detection at the delta opioid receptor (OPRD1) locus and population genetics of a novel variant affecting protein sequence. Hum Genet. 2000;107:86–8.
pubmed: 10982041
doi: 10.1007/s004390000340
Mayer P, et al. Association between a delta opioid receptor gene polymorphism and heroin dependence in man. Neuroreport. 1997;8:2547–50.
pubmed: 9261824
doi: 10.1097/00001756-199707280-00025
Narendran R, et al. Nociceptin receptors in alcohol use disorders: a positron emission tomography study using [11C]NOP-1A. Biol Psychiatry. 2017. May 31. pii: S0006-3223(17)31621-9. https://doi.org/10.1016/j.biopsych.2017.05.019 . [Epub ahead of print].
pubmed: 28711193
doi: 10.1016/j.biopsych.2017.05.019
Post A, et al. Proof-of-concept study to assess the nociceptin receptor antagonist LY2940094 as a new treatment for alcohol dependence. Alcohol Clin Exp Res. 2016;40:1935–44.
pubmed: 27435979
doi: 10.1111/acer.13147
Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science. 1973;179:1011–4.
pubmed: 4687585
doi: 10.1126/science.179.4077.1011
Simon EJ, Hiller JM, Edelman I. Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc Natl Acad Sci USA. 1973;70:1947–9.
pubmed: 4516196
doi: 10.1073/pnas.70.7.1947
pmcid: 433639
Angst J, et al. Preliminary results of treatment with beta-endophorin in depression. In: Usdin E, Bunney WE, Kline NS, editors. Endorphins in mental health research. Basingstoke: Palgrave Macmillan; 1979. p. 518.
Gerner RH, Catlin DH, Gorelick DA, Hui KK, Li CH. beta-Endorphin. Intravenous infusion causes behavioral change in psychiatric inpatients. Arch Gen Psychiatry. 1980;37:642–7.
pubmed: 7387336
doi: 10.1001/archpsyc.1980.01780190040005
Kline NS, et al. Beta-endorphin—induced changes in schizophrenic and depressed patients. Arch Gen Psychiatry. 1977;34:1111–3.
pubmed: 901140
doi: 10.1001/archpsyc.1977.01770210125012
Pickar D, et al. Behavioral and biological effects of acute beta-endorphin injection in schizophrenic and depressed patients. Am J Psychiatry. 1981;138:160–6.
pubmed: 6257125
doi: 10.1176/ajp.138.2.160
Extein I, et al. Methadone and morphine in depression [proceedings]. Psychopharmacol Bull. 1981;17:29–33.
pubmed: 7015398
Varga E, Sugerman AA, Apter J. The effect of codeine on involutional and senile depression. Ann N Y Acad Sci. 1982;398:103–5.
pubmed: 6961851
doi: 10.1111/j.1749-6632.1982.tb39481.x
Bodkin JA, Zornberg GL, Lukas SE, Cole JO. Buprenorphine treatment of refractory depression. J Clin Psychopharmacol. 1995;15:49–57.
pubmed: 7714228
doi: 10.1097/00004714-199502000-00008
Callaway E. Buprenorphine for depression: the un-adoptable orphan. Biol Psychiatry. 1996;39:989–90.
pubmed: 8780832
doi: 10.1016/0006-3223(96)00158-8
Emrich HM, Vogt P, Herz A. Possible antidepressive effects of opioids: Action of buprenorphine. Ann N Y Acad Sci. 1982;398:108–12.
pubmed: 6760767
doi: 10.1111/j.1749-6632.1982.tb39483.x
Karp J, et al. Safety, tolerability, and clinical effect of low-dose buprenorphine for treatment-resistant depression in midlife and older adults. J Clin Psychiatry. 2014;75:e785–93.
pubmed: 25191915
pmcid: 4157317
doi: 10.4088/JCP.13m08725
Mongan L, Callaway E. Buprenorphine responders. Biol Psychiatry. 1990;28:1078–80.
pubmed: 2289007
doi: 10.1016/0006-3223(90)90619-D
Nyhuis PW, Gastpar M, Scherbaum N. Opiate treatment in depression refractory to antidepressants and electroconvulsive therapy. J Clin Psychopharmacol. 2008;28:593–5.
pubmed: 18794671
doi: 10.1097/JCP.0b013e31818638a4
Walsh SL, Preston KL, Stitzer ML, Cone EJ, Bigelow GE. Clinical pharmacology of buprenorphine: ceiling effects at high doses. Clin Pharmacol Ther. 1994;55:569–80.
pubmed: 8181201
doi: 10.1038/clpt.1994.71
Emrich HM, Vogt P, Herz A. Possible antidepressive effects of opioids: action of buprenorphine. Ann N Y Acad Sci. 1982;398:108–12.
pubmed: 6760767
doi: 10.1111/j.1749-6632.1982.tb39483.x
Bershad AK, Ruiz NA, de Wit H. Effects of buprenorphine on responses to emotional stimuli in individuals with a range of mood symptomatology. Int J Neuropsychopharmacol. 2017;21:120.
pmcid: 5793829
doi: 10.1093/ijnp/pyx077
Yovell Y, et al. Ultra-low-dose buprenorphine as a time-limited treatment for severe suicidal ideation: a randomized controlled trial. Am J Psychiatry. 2016;173:491–8.
pubmed: 26684923
doi: 10.1176/appi.ajp.2015.15040535
Almatroudi A, Husbands SM, Bailey CP, Bailey SJ. Combined administration of buprenorphine and naltrexone produces antidepressant-like effects in mice. J Psychopharmacol. 2015;29:812–21.
pubmed: 26045511
pmcid: 5075030
doi: 10.1177/0269881115586937
Ehrich E, et al. Evaluation of opioid modulation in major depressive disorder. Neuropsychopharmacology. 2015;40:1448–55.
pubmed: 25518754
pmcid: 4397403
doi: 10.1038/npp.2014.330
Fava M, et al. Opioid modulation with buprenorphine/samidorphan as adjunctive treatment for inadequate response to antidepressants: a randomized double-blind placebo-controlled trial. Am J Psychiatry. 2016;173:499–508.
pubmed: 26869247
doi: 10.1176/appi.ajp.2015.15070921
Krystal JH, et al. It is time to address the crisis in the pharmacotherapy of posttraumatic stress disorder: a consensus statement of the PTSD psychopharmacology working group. Biol Psychiatry. 2017;82:e51–9.
pubmed: 28454621
doi: 10.1016/j.biopsych.2017.03.007
Seal KH, et al. Observational evidence for Buprenorphine’s impact on posttraumatic stress symptoms in veterans with chronic pain and opioid use disorder. J Clin Psychiatry. 2016;77:1182–8.
pubmed: 27035058
doi: 10.4088/JCP.15m09893
Geracioti TD. Tramadol treatment of combat-related posttraumatic stress disorder. Ann Clin Psychiatry. 2014;26:217–21.
pubmed: 25166484
Thomas MM, Harpaz-Rotem I, Tsai J, Southwick SM, Pietrzak RH. Mental and physical health conditions in US combat veterans: results from the national health and resilience in veterans study. Prim Care Companion CNS Disord. 2017;19:17m02181.
Szczytkowski-Thomson JL, Lebonville CL, Lysle DT. Morphine prevents the development of stress-enhanced fear learning. Pharmacol Biochem Behav. 2013;103:672–7.
pubmed: 23159544
doi: 10.1016/j.pbb.2012.10.013
Holbrook TL, Galarneau MR, Dye JL, Quinn K, Dougherty AL. Morphine use after combat injury in Iraq and post-traumatic stress disorder. N Engl J Med. 2010;362:110–7.
pubmed: 20071700
doi: 10.1056/NEJMoa0903326
Bryant RA, Creamer M, O’Donnell M, Silove D, McFarlane AC. A study of the protective function of acute morphine administration on subsequent posttraumatic stress disorder. Biol Psychiatry. 2009;65:438–40.
pubmed: 19058787
doi: 10.1016/j.biopsych.2008.10.032
Mouthaan J, et al. The role of early pharmacotherapy in the development of posttraumatic stress disorder symptoms after traumatic injury: an observational cohort study in consecutive patients. Gen Hosp Psychiatry. 2015;37:230–5.
pubmed: 25805128
doi: 10.1016/j.genhosppsych.2015.02.010
Di Filippo M, et al. Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory. Behav Brain Res. 2009;199:108–18.
pubmed: 18948145
doi: 10.1016/j.bbr.2008.09.025
Khazaal Y, Despland JN, Currat T, Zullino DF. Obsessive-compulsive symptoms precipitated by methadone tapering. J Clin Psychopharmacol. 2004;24:682–3.
pubmed: 15538140
doi: 10.1097/01.jcp.0000145338.07676.cb
Khazaal Y, Krenz S, Benmebarek M, Zullino DF. Worsening of obsessive-compulsive symptoms under methadone tapering. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1350–2.
pubmed: 16630677
doi: 10.1016/j.pnpbp.2006.03.001
Koran LM, et al. Double-blind treatment with oral morphine in treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry. 2005;66:353–9.
pubmed: 15766302
doi: 10.4088/JCP.v66n0312
Shapira NA, et al. Open-label pilot study of tramadol hydrochloride in treatment-refractory obsessive-compulsive disorder. Depress Anxiety. 1997;6:170–3.
pubmed: 9559288
doi: 10.1002/(SICI)1520-6394(1997)6:4<170::AID-DA7>3.0.CO;2-G
New AS, Stanley B. An opioid deficit in borderline personality disorder: self-cutting, substance abuse, and social dysfunction. Am J Psychiatry. 2010;167:882–5.
pubmed: 20693463
doi: 10.1176/appi.ajp.2010.10040634
Stanley B, Siever LJ. The interpersonal dimension of borderline personality disorder: toward a neuropeptide model. Am J Psychiatry. 2010;167:24–39.
pubmed: 19952075
doi: 10.1176/appi.ajp.2009.09050744
Stanley B, et al. Non-suicidal self-injurious behavior, endogenous opioids and monoamine neurotransmitters. J Affect Disord. 2010;124:134–40.
pubmed: 19942295
doi: 10.1016/j.jad.2009.10.028
Pellissier LP, Gandia J, Laboute T, Becker JAJ, Le Merrer J. mu-Opioid receptor, social behaviour and autism spectrum disorder: reward matters. Br J Pharmacol. 2017 Apr 3. https://doi.org/10.1111/bph.13808 . [Epub ahead of print].
pubmed: 28369738
pmcid: 6016638
doi: 10.1111/bph.13808
Roy A, Roy M, Deb S, Unwin G, Roy A. Are opioid antagonists effective in attenuating the core symptoms of autism spectrum conditions in children: a systematic review. J Intellect Disabil Res. 2015;59:293–306.
pubmed: 24589346
doi: 10.1111/jir.12122
Madariaga-Mazon A, et al. Mu-Opioid receptor biased ligands: A safer and painless discovery of analgesics? Drug Discov Today. 2017;22:1719–29.
pubmed: 28743488
pmcid: 6620030
doi: 10.1016/j.drudis.2017.07.002
Hirvonen J, et al. Measurement of central mu-opioid receptor binding in vivo with PET and [11C]carfentanil: a test-retest study in healthy subjects. Eur J Nucl Med Mol Imaging. 2009;36:275–86.
pubmed: 18779961
doi: 10.1007/s00259-008-0935-6
Naganawa M, et al. Test-retest reproducibility of binding parameters in humans with 11C-LY2795050, an antagonist PET radiotracer for the kappa opioid receptor. J Nucl Med. 2015;56:243–8.
pubmed: 25593119
doi: 10.2967/jnumed.114.147975
Weerts EM, et al. Differences in delta- and mu-opioid receptor blockade measured by positron emission tomography in naltrexone-treated recently abstinent alcohol-dependent subjects. Neuropsychopharmacology. 2008;33:653–65.
pubmed: 17487229
doi: 10.1038/sj.npp.1301440