Adipose Tissue Expression of PACAP, VIP, and Their Receptors in Response to Cold Stress.
Adipose Tissue, Brown
/ metabolism
Animals
Cells, Cultured
Cold-Shock Response
Male
Mice
Mice, Inbred C57BL
Pituitary Adenylate Cyclase-Activating Polypeptide
/ genetics
RNA Splicing
Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
/ genetics
Receptors, Vasoactive Intestinal Peptide
/ genetics
Vasoactive Intestinal Peptide
/ genetics
Adipose tissues
Lipid metabolism
PACAP
Thermogenesis
VIP
mRNA expression
Journal
Journal of molecular neuroscience : MN
ISSN: 1559-1166
Titre abrégé: J Mol Neurosci
Pays: United States
ID NLM: 9002991
Informations de publication
Date de publication:
Jul 2019
Jul 2019
Historique:
received:
31
03
2018
accepted:
07
06
2018
pubmed:
10
7
2018
medline:
18
12
2019
entrez:
9
7
2018
Statut:
ppublish
Résumé
Obesity arises from disrupted energy balance and is caused by chronically higher energy intake compared to expenditure via basal metabolic rate, exercise, and thermogenesis. The brown adipose tissue (BAT), the primary thermogenic organ, has received considerable attention as a potential therapeutic target due to its ability to burn lipids in the production of heat. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been identified as a key regulator of the physiological stress response both centrally and peripherally. While PACAP has been shown to increase thermogenesis by acting at the hypothalamus to increase sympathetic output to BAT, a peripheral role for PACAP-activated thermogenesis has not been studied. We identified PACAP receptor (PAC1, VPAC1/2) expression for the first time in murine BAT and confirmed their expression in white adipose tissues. PAC1 receptor expression was significantly altered in all three adipose tissues studied in response to 3.5-week cold acclimation, with expression patterns differing by depot type. In primary cell culture, VPAC1 was increased in differentiated compared to non-differentiated brown adipocytes, and the same trend was observed for the PACAP-specific receptor PAC1 in gonadal white fat primary cultures. The primary PAC1R mRNA splice variant in interscapular BAT was determined as isoform 2 by RNA-Seq. These results show that PACAP receptors are present in adipose tissues and may have important functional roles in adipocyte differentiation, lipid metabolism, or adipose sensitization to sympathetic signaling in response to thermogenic stimuli.
Identifiants
pubmed: 29982965
doi: 10.1007/s12031-018-1099-x
pii: 10.1007/s12031-018-1099-x
pmc: PMC6581916
doi:
Substances chimiques
Adcyap1r1 protein, mouse
0
Pituitary Adenylate Cyclase-Activating Polypeptide
0
Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
0
Receptors, Vasoactive Intestinal Peptide
0
Vasoactive Intestinal Peptide
37221-79-7
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
427-438Subventions
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : RGPIN-2015-06146
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : USRA
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : USRA
Références
Peptides. 1999;20(8):943-8
pubmed: 10503772
Neuropharmacology. 2000 Apr 27;39(7):1303-8
pubmed: 10760372
Nature. 2000 Apr 6;404(6778):652-60
pubmed: 10766252
J Biol Chem. 2000 Aug 18;275(33):25073-81
pubmed: 10825155
Endocr Rev. 2000 Dec;21(6):697-738
pubmed: 11133069
Endocrinology. 2002 Oct;143(10):3946-54
pubmed: 12239106
Cell. 2002 Dec 27;111(7):931-41
pubmed: 12507421
Biochem Biophys Res Commun. 2003 Jan 24;300(4):839-46
pubmed: 12559949
Endocrinology. 2003 Dec;144(12):5293-9
pubmed: 12960103
Physiol Rev. 2004 Jan;84(1):277-359
pubmed: 14715917
Endocrinology. 2005 Feb;146(2):744-50
pubmed: 15514088
Circulation. 2004 Nov 16;110(20):3245-51
pubmed: 15520307
Comp Biochem Physiol A Mol Integr Physiol. 2007 May;147(1):156-64
pubmed: 17291802
N Engl J Med. 2009 Apr 9;360(15):1509-17
pubmed: 19357406
J Neurosci. 2009 Nov 25;29(47):14828-35
pubmed: 19940178
Regul Pept. 2010 Apr 9;161(1-3):73-80
pubmed: 20171991
Am J Pathol. 2010 Nov;177(5):2563-75
pubmed: 20889562
J Clin Endocrinol Metab. 2011 Jan;96(1):192-9
pubmed: 20943785
J Exp Biol. 2011 Jan 15;214(Pt 2):242-53
pubmed: 21177944
Am J Physiol Heart Circ Physiol. 2011 Jun;300(6):H2300-7
pubmed: 21460201
Am J Physiol Endocrinol Metab. 2012 Jan 1;302(1):E19-31
pubmed: 21828341
Am J Physiol Regul Integr Comp Physiol. 2011 Dec;301(6):R1625-34
pubmed: 21957159
Cell Metab. 2011 Oct 5;14(4):478-90
pubmed: 21982708
Cell. 2012 May 11;149(4):871-85
pubmed: 22579288
Cell. 2012 Jul 20;150(2):366-76
pubmed: 22796012
Cell Metab. 2013 May 7;17(5):638-43
pubmed: 23583169
Cell Metab. 2013 May 7;17(5):798-805
pubmed: 23663743
Nat Med. 2013 Oct;19(10):1252-63
pubmed: 24100998
Nat Rev Endocrinol. 2014 Jan;10(1):24-36
pubmed: 24146030
Am J Physiol Endocrinol Metab. 2013 Dec;305(12):E1452-63
pubmed: 24148346
Annu Rev Physiol. 2014;76:225-49
pubmed: 24188710
J Intern Med. 2014 Oct;276(4):364-77
pubmed: 24717051
Nature. 2014 Jun 5;510(7503):76-83
pubmed: 24899307
J Mol Neurosci. 2014 Nov;54(3):543-54
pubmed: 24994541
J Endocrinol. 2014 Sep;222(3):327-39
pubmed: 25056115
Trends Endocrinol Metab. 2016 Sep;27(9):620-632
pubmed: 27166671
J Vasc Res. 2017;54(3):180-192
pubmed: 28490016
Pflugers Arch. 2018 Jan;470(1):79-88
pubmed: 28965274
Bibl Cardiol. 1984;(38):60-9
pubmed: 6085266
Am J Physiol. 1982 Jun;242(6):E353-9
pubmed: 6953766
Pflugers Arch. 1981 Jun;390(3):224-9
pubmed: 7196021
Acta Physiol Scand. 1981 May;112(1):65-70
pubmed: 7282406
J Neurochem. 1995 Sep;65(3):978-87
pubmed: 7643128
Nature. 1993 Sep 9;365(6442):170-5
pubmed: 8396727
Brain Res. 1995 Nov 27;700(1-2):219-26
pubmed: 8624713
J Biol Chem. 1996 Sep 6;271(36):22146-51
pubmed: 8703026
J Biol Chem. 1996 Dec 13;271(50):32226-32
pubmed: 8943280
Nature. 1997 May 1;387(6628):90-4
pubmed: 9139827
Pharmacol Rev. 1998 Jun;50(2):265-70
pubmed: 9647867