Transfer Learning for Molecular Cancer Classification Using Deep Neural Networks.


Journal

IEEE/ACM transactions on computational biology and bioinformatics
ISSN: 1557-9964
Titre abrégé: IEEE/ACM Trans Comput Biol Bioinform
Pays: United States
ID NLM: 101196755

Informations de publication

Date de publication:
Historique:
pubmed: 12 7 2018
medline: 3 7 2020
entrez: 12 7 2018
Statut: ppublish

Résumé

The emergence of deep learning has impacted numerous machine learning based applications and research. The reason for its success lies in two main advantages: 1) it provides the ability to learn very complex non-linear relationships between features and 2) it allows one to leverage information from unlabeled data that does not belong to the problem being handled. This paper presents a transfer learning procedure for cancer classification, which uses feature selection and normalization techniques in conjunction with s sparse auto-encoders on gene expression data. While classifying any two tumor types, data of other tumor types were used in unsupervised manner to improve the feature representation. The performance of our algorithm was tested on 36 two-class benchmark datasets from the GEMLeR repository. On performing statistical tests, it is clearly ascertained that our algorithm statistically outperforms several generally used cancer classification approaches. The deep learning based molecular disease classification can be used to guide decisions made on the diagnosis and treatment of diseases, and therefore may have important applications in precision medicine.

Identifiants

pubmed: 29993662
doi: 10.1109/TCBB.2018.2822803
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2089-2100

Auteurs

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH