Induction of HRR genes and inhibition of DNMT1 is associated with anthracycline anti-tumor antibiotic-tolerant breast carcinoma cells.
Breast Neoplasms
/ drug therapy
DNA (Cytosine-5-)-Methyltransferase 1
/ antagonists & inhibitors
DNA Methylation
/ drug effects
DNA, Neoplasm
/ genetics
Doxorubicin
/ pharmacology
Drug Resistance, Neoplasm
/ drug effects
Female
Gene Expression Regulation, Enzymologic
/ drug effects
Gene Expression Regulation, Neoplastic
/ drug effects
Humans
MCF-7 Cells
Neoplasm Proteins
/ antagonists & inhibitors
Nogalamycin
/ pharmacology
Recombinational DNA Repair
/ drug effects
DNMT1
Doxorubicin/nogalamycin
HRR pathway
MCF-7/MDA MB 231
Promoter methylation
Journal
Molecular and cellular biochemistry
ISSN: 1573-4919
Titre abrégé: Mol Cell Biochem
Pays: Netherlands
ID NLM: 0364456
Informations de publication
Date de publication:
Mar 2019
Mar 2019
Historique:
received:
12
06
2018
accepted:
30
08
2018
pubmed:
5
9
2018
medline:
28
2
2019
entrez:
5
9
2018
Statut:
ppublish
Résumé
The aim of the study was to understand the role of homologous recombination repair (HRR) pathway genes in development of chemotolerance in breast cancer (BC). For this purpose, chemotolerant BC cells were developed in MCF-7 and MDA MB 231 cell lines after treatment with two anthracycline anti-tumor antibiotics doxorubicin and nogalamycin at different concentrations for 48 h with differential cell viability. The drugs were more effective in MCF-7 (IC50: 0.214-0.242 µM) than in MDA MB 231 (IC50: 0.346-0.37 µM) as shown by cell viability assay. The drugs could reduce the protein expression of PCNA in the cell lines. Increased mRNA/protein expression of the HRR (BRCA1, BRCA2, FANCC, FANCD2, and BRIT1) genes was seen in the cell lines in the presence of the drugs at different concentrations (lower IC50, IC50, and higher IC50) irrespective of the cell viability (68-41%). Quantitative methylation assay showed an increased percentage of hypomethylation of the promoters of these genes after drug treatment in the cell lines. Similarly, chemotolerant neoadjuvant chemotherapy (NACT) treated primary BC samples showed significantly higher frequency of hypomethylation of the genes than the pretherapeutic BC samples. The drugs in different concentrations could reduce m-RNA and protein expression of DNMT1 (DNA methyltransferase 1) in the cell lines. Similar phenomenon was also evident in the NACT samples than in the pretherapeutic BC samples. Thus, our data indicate that reduced DNMT1 expression along with promoter hypomethylation and increased expression of the HRR genes might have importance in chemotolerance in BC.
Identifiants
pubmed: 30178275
doi: 10.1007/s11010-018-3442-5
pii: 10.1007/s11010-018-3442-5
doi:
Substances chimiques
DNA, Neoplasm
0
Neoplasm Proteins
0
Doxorubicin
80168379AG
DNA (Cytosine-5-)-Methyltransferase 1
EC 2.1.1.37
DNMT1 protein, human
EC 2.1.1.37
Nogalamycin
L059DCD6IP
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
163-178Subventions
Organisme : UGC-NET Fellowship Grant
ID : F.2-3/2000 (SA-I)
Références
Oral Oncol. 2002 Jan;38(1):6-15
pubmed: 11755815
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
BMC Cancer. 2002 Mar 21;2:4
pubmed: 11945179
Nutr Cancer. 2003;45(2):247-55
pubmed: 12881020
J Cell Physiol. 2004 Aug;200(2):223-34
pubmed: 15174092
Mol Pharmacol. 2004 Dec;66(6):1415-20
pubmed: 15340041
Mol Biol (Mosk). 2004 Jul-Aug;38(4):654-67
pubmed: 15456137
Nucleic Acids Res. 2004 Dec 02;32(21):e168
pubmed: 15576675
Ann Surg Oncol. 2004 Dec;11(12):1045-55
pubmed: 15576832
Lancet Oncol. 2005 Nov;6(11):886-98
pubmed: 16257797
Br J Cancer. 2006 Apr 24;94(8):1087-92
pubmed: 16495912
Cancer Cell. 2006 Aug;10(2):145-57
pubmed: 16872911
J Clin Oncol. 2006 Aug 10;24(23):3799-808
pubmed: 16896009
Clin Cancer Res. 2006 Nov 15;12(22):6643-51
pubmed: 17121883
Breast Cancer Res Treat. 2008 Jan;107(1):41-7
pubmed: 17333336
Ann Surg Oncol. 2008 Apr;15(4):1070-80
pubmed: 18239974
Nat Protoc. 2008;3(6):1101-8
pubmed: 18546601
Mol Cancer. 2008 Nov 06;7:84
pubmed: 18990233
J Clin Oncol. 2009 Aug 10;27(23):3764-71
pubmed: 19564533
Breast Cancer Res. 2010;12(2):R17
pubmed: 20205718
Cell. 2010 Apr 2;141(1):69-80
pubmed: 20371346
Cell Mol Life Sci. 2010 Nov;67(21):3699-710
pubmed: 20697770
Oncologist. 2011;16 Suppl 1:61-70
pubmed: 21278442
Nat Genet. 2011 Jun;43(6):595-600
pubmed: 21532572
J Cell Physiol. 2012 Oct;227(10):3389-96
pubmed: 22212895
Br J Nutr. 2012 Oct;108(7):1187-93
pubmed: 22217331
Ann Surg Oncol. 2013 Dec;20 Suppl 3:S424-32
pubmed: 23117476
Mol Cancer. 2013 May 24;12:45
pubmed: 23705792
Pediatr Blood Cancer. 2013 Dec;60(12):2068-72
pubmed: 24000236
Breast Cancer Res Treat. 2013 Sep;141(2):205-12
pubmed: 24026861
J Oncol. 2013;2013:732047
pubmed: 24027583
J Natl Cancer Inst. 2014 Jan;106(1):djt335
pubmed: 24402422
Oncotarget. 2014 Nov 15;5(21):10901-15
pubmed: 25337721
Eur J Oncol Nurs. 2015 Jun;19(3):260-7
pubmed: 25529935
Stem Cells Transl Med. 2015 Jun;4(6):576-89
pubmed: 25900727
Mol Carcinog. 2016 Jul;55(7):1138-49
pubmed: 26154024
J Neuroinflammation. 2015 Jul 14;12:132
pubmed: 26169064
Proc Natl Acad Sci U S A. 2016 May 10;113(19):5251-6
pubmed: 27114534
Future Oncol. 2017 Jan;13(2):159-174
pubmed: 27646721
PLoS One. 2016 Oct 6;11(10):e0164194
pubmed: 27711132
Mol Cell Biochem. 1996 Sep 6;162(1):75-82
pubmed: 8905628
Carcinogenesis. 1998 Mar;19(3):419-24
pubmed: 9525275
Oncogene. 1998 Apr 30;16(17):2229-41
pubmed: 9619832