Imbalances in protein homeostasis caused by mutant desmin.
R349P desmin knock-in mice
desminopathy
immortalized myoblasts
protein homeostasis
protein quality control
Journal
Neuropathology and applied neurobiology
ISSN: 1365-2990
Titre abrégé: Neuropathol Appl Neurobiol
Pays: England
ID NLM: 7609829
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
29
05
2018
accepted:
17
08
2018
pubmed:
5
9
2018
medline:
1
9
2020
entrez:
5
9
2018
Statut:
ppublish
Résumé
We investigated newly generated immortalized heterozygous and homozygous R349P desmin knock-in myoblasts in conjunction with the corresponding desminopathy mice as models for desminopathies to analyse major protein quality control processes in response to the presence of R349P mutant desmin. We used hetero- and homozygous R349P desmin knock-in mice for analyses and for crossbreeding with p53 knock-out mice to generate immortalized R349P desmin knock-in skeletal muscle myoblasts and myotubes. Skeletal muscle sections and cultured muscle cells were investigated by indirect immunofluorescence microscopy, proteasomal activity measurements and immunoblotting addressing autophagy rate, chaperone-assisted selective autophagy and heat shock protein levels. Muscle sections were further analysed by transmission and immunogold electron microscopy. We demonstrate that mutant desmin (i) increases proteasomal activity, (ii) stimulates macroautophagy, (iii) dysregulates the chaperone assisted selective autophagy and (iv) elevates the protein levels of αB-crystallin and Hsp27. Both αB-crystallin and Hsp27 as well as Hsp90 displayed translocation patterns from Z-discs as well as Z-I junctions, respectively, to the level of sarcomeric I-bands in dominant and recessive desminopathies. Our findings demonstrate that the presence of R349P mutant desmin causes a general imbalance in skeletal muscle protein homeostasis via aberrant activity of all major protein quality control systems. The augmented activity of these systems and the subcellular shift of essential heat shock proteins may deleteriously contribute to the previously observed increased turnover of desmin itself and desmin-binding partners, which triggers progressive dysfunction of the extrasarcomeric cytoskeleton and the myofibrillar apparatus in the course of the development of desminopathies.
Substances chimiques
Desmin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
476-494Informations de copyright
© 2018 British Neuropathological Society.