The utility of 3D-printed airway stents to improve treatment strategies for central airway obstructions.
3D-Printing
airway stent
lung cancer
medical devices
tracheobronchomalacia
Journal
Drug development and industrial pharmacy
ISSN: 1520-5762
Titre abrégé: Drug Dev Ind Pharm
Pays: England
ID NLM: 7802620
Informations de publication
Date de publication:
Jan 2019
Jan 2019
Historique:
pubmed:
13
9
2018
medline:
11
5
2019
entrez:
13
9
2018
Statut:
ppublish
Résumé
Airway stents are commonly used in the management of patients suffering from central airway obstruction (CAO). CAO may occur directly from airway strictures, obstructing airway cancers, airway fistulas or tracheobronchomalacia, resulting from the weakening and dynamic collapse of the airway wall. Current airway stents are constructed from biocompatible medical-grade silicone or from a nickel-titanium (nitinol) alloy with fixed geometry. The stents are inserted via the mouth during a bronchoscopic procedure. Existing stents have many shortcomings including the development of obstructing granulation tissue in the weeks and months following placement, mucous build up within the stent, and cough. Furthermore, airway stents are expensive and, if improperly sized for a given airway, may be easily dislodged (stent migration). Currently, in Australia, it is estimated that approximately 12,000 patients will develop CAO annually, many of whom will require airway stenting intervention. Of all stenting procedures, the rate of failure is currently reported to be at 22%. With a growing incidence of lung cancer prevalence globally, the need for updating airway stent technology is now greater than ever and personalizing stents using 3D-printing technology may offer the best chance of addressing many of the current limitations in stent design. This review article will assess what represents the gold standard in stent manufacture with regards to treatment of tracheobronchial CAO, the challenges of current airway stents, and outlines the necessity and challenges of incorporating 3D-printing technology into personalizing airway stents today.
Identifiants
pubmed: 30207189
doi: 10.1080/03639045.2018.1522325
doi:
Substances chimiques
Silicones
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM