Creatine and phosphocreatine mapping of mouse skeletal muscle by a polynomial and Lorentzian line-shape fitting CEST method.
chemical exchange saturation transfer
creatine
guanidinoacetate
guanidinoacetate N-methyltransferase deficiency mouse
magnetization transfer contrast
phosphate guanidinoacetate
phosphocreatine
polynomial and Lorentzian line-shape fitting
Journal
Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
30
04
2018
revised:
19
07
2018
accepted:
10
08
2018
pubmed:
25
9
2018
medline:
31
12
2019
entrez:
25
9
2018
Statut:
ppublish
Résumé
To obtain high-resolution Cr and PCr maps of mouse skeletal muscle using a polynomial and Lorentzian line-shape fitting (PLOF) CEST method. Wild-type mice and guanidinoacetate N-methyltransferase-deficient (GAMT-/-) mice that have low Cr and PCr concentrations in muscle were used to assign the Cr and PCr peaks in the Z-spectrum at 11.7 T. A PLOF method was proposed to simultaneously extract and quantify the Cr and PCr by assuming a polynomial function for the background and 2 Lorentzian functions for the CEST peaks at 1.95 ppm and 2.5 ppm. The Z-spectra of phantoms revealed that PCr has 2 CEST peaks (2 ppm and 2.5 ppm), whereas Cr only showed 1 peak at 2 ppm. Comparison of the Z-spectra of wild-type and GAMT-/- mice indicated that, contrary to brain, there was no visible protein guanidinium peak in the skeletal-muscle Z-spectrum, which allowed us to extract clean PCr and Cr CEST signals. High-resolution PCr and Cr concentration maps of mouse skeletal muscle were obtained by the PLOF CEST method after calibration with in vivo MRS. The PLOF method provides an efficient way to map Cr and PCr concentrations simultaneously in the skeletal muscle at high MRI field.
Identifiants
pubmed: 30246265
doi: 10.1002/mrm.27514
pmc: PMC6258268
mid: NIHMS985619
doi:
Substances chimiques
Contrast Media
0
Phosphocreatine
020IUV4N33
phosphocreatinine
5786-71-0
Guanidinoacetate N-Methyltransferase
EC 2.1.1.2
Creatine
MU72812GK0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
69-78Subventions
Organisme : NIBIB NIH HHS
ID : R01 EB015032
Pays : United States
Organisme : NIH HHS
ID : P41EB015909
Pays : United States
Organisme : NIH HHS
ID : R01EB015032
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01EB015032
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL063030
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01HL63030
Pays : United States
Organisme : NIH HHS
ID : R01HL63030
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41EB015909
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB015909
Pays : United States
Informations de copyright
© 2018 International Society for Magnetic Resonance in Medicine.
Références
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4359-64
pubmed: 17360529
NMR Biomed. 2013 May;26(5):507-18
pubmed: 23281186
Magn Reson Med. 2012 Sep;68(3):711-9
pubmed: 22161770
J Magn Reson Imaging. 2007 Feb;25(2):321-38
pubmed: 17260389
Biochim Biophys Acta. 2006 Feb;1762(2):164-80
pubmed: 16236486
Magn Reson Med. 2014 Jan;71(1):118-32
pubmed: 23401310
Magn Reson Med. 2011 May;65(5):1448-60
pubmed: 21500270
J Magn Reson Imaging. 2014 Sep;40(3):596-602
pubmed: 24925857
NMR Biomed. 2006 Nov;19(7):927-53
pubmed: 17075956
Magn Reson Med. 2017 Sep;78(3):881-887
pubmed: 28653349
NMR Biomed. 2014 Apr;27(4):406-16
pubmed: 24474497
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2266-70
pubmed: 18268341
J Magn Reson Imaging. 2018 Jan;47(1):11-27
pubmed: 28792646
Magn Reson Med. 2013 Mar 1;69(3):637-47
pubmed: 22505325
Brain Res Bull. 2008 Jul 1;76(4):329-43
pubmed: 18502307
Magn Reson Med. 2014 May;71(5):1798-812
pubmed: 23813483
Magn Reson Med. 2017 Jan;77(1):196-208
pubmed: 26845067
Sci Rep. 2017 Aug 31;7(1):10138
pubmed: 28860625
J Neurosci Methods. 2013 Jan 15;212(1):87-93
pubmed: 23041110
NMR Biomed. 2007 Oct;20(6):555-65
pubmed: 17628042
Radiology. 1997 Aug;204(2):403-10
pubmed: 9240527
Magn Reson Med. 2003 Nov;50(5):936-43
pubmed: 14587004
NMR Biomed. 2021 Feb;34(2):e4437
pubmed: 33283945
Nat Med. 2014 Feb;20(2):209-14
pubmed: 24412924
Anal Chem. 2017 Jul 18;89(14):7758-7764
pubmed: 28627877
NMR Biomed. 2001 Jun;14(4):260-4
pubmed: 11410943
Neuroimage. 2013 Aug 15;77:114-24
pubmed: 23567889
Nat Med. 2003 Aug;9(8):1085-90
pubmed: 12872167
NMR Biomed. 2015 Nov;28(11):1402-12
pubmed: 26374674
Nat Med. 2012 Jan 22;18(2):302-6
pubmed: 22270722
Neuroimage. 2018 Mar;168:222-241
pubmed: 28435103
Magn Reson Med. 2018 Oct;80(4):1568-1576
pubmed: 29405374
Sci Transl Med. 2015 Oct 14;7(309):309ra161
pubmed: 26468323
NMR Biomed. 2015 Jan;28(1):1-8
pubmed: 25295758
Handb Clin Neurol. 2013;113:1837-43
pubmed: 23622406
NMR Biomed. 2017 Oct;30(10):
pubmed: 28590070
Neuroimage. 2012 Jan 16;59(2):1218-27
pubmed: 21871570
Magn Reson Med. 1993 Dec;30(6):672-9
pubmed: 8139448
J Appl Physiol (1985). 2007 Jun;102(6):2121-7
pubmed: 17347380
J Biomol NMR. 2011 Aug;50(4):299-314
pubmed: 21809183
NMR Biomed. 2012 Nov;25(11):1305-9
pubmed: 22431193
Magn Reson Med. 2014 May;71(5):1841-53
pubmed: 23801344
PLoS One. 2011 Jan 13;6(1):e16187
pubmed: 21249153
NMR Biomed. 2014 Mar;27(3):240-52
pubmed: 24395553
Pediatr Res. 1994 Sep;36(3):409-13
pubmed: 7808840
Magn Reson Imaging. 2016 Oct;34(8):1100-6
pubmed: 27211260
Physiol Rev. 2000 Jul;80(3):1107-213
pubmed: 10893433
Magn Reson Med. 2011 Apr;65(4):927-48
pubmed: 21337419
NMR Biomed. 2017 Dec;30(12):
pubmed: 28961344
Phys Med Biol. 2013 Nov 21;58(22):R221-69
pubmed: 24201125
NMR Biomed. 2013 Jul;26(7):810-28
pubmed: 23303716
J Physiol. 2003 May 1;548(Pt 3):847-58
pubmed: 12640020