Control of chronic lymphocytic leukemia development by clonally-expanded CD8


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
03 2019
Historique:
received: 14 06 2018
accepted: 09 08 2018
revised: 30 07 2018
pubmed: 30 9 2018
medline: 21 5 2019
entrez: 30 9 2018
Statut: ppublish

Résumé

Chronic lymphocytic leukemia (CLL) is associated with substantial alterations in T-cell composition and function. However, the role of T-cells in CLL remains largely controversial. Here, we utilized the Eµ-TCL1 mouse model of CLL as well as blood and lymph node samples of CLL patients to investigate the existence of anti-tumoral immune responses in CLL, and to characterize involved immune cell populations. Thereby, we identified an oligoclonal CD8

Identifiants

pubmed: 30267008
doi: 10.1038/s41375-018-0250-6
pii: 10.1038/s41375-018-0250-6
doi:

Substances chimiques

Interferon-gamma 82115-62-6

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

625-637

Subventions

Organisme : Generalitat de Catalunya (Government of Catalonia)
ID : 2017 SGR 1009
Pays : International
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB1074 project B1
Pays : International
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : "PRECiSe" (031L0076A)
Pays : International
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : FIRE-CLL
Pays : International
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : "PRECiSe" (031L0076A)
Pays : International
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : FIRE-CLL
Pays : International
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : "PRECiSe" (031L0076A)
Pays : International
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : FIRE-CLL
Pays : International
Organisme : Helmholtz-Gemeinschaft (Helmholtz Gemeinschaft)
ID : NCT3.0_2015.13 ImmunOmics
Pays : International
Organisme : Helmholtz-Gemeinschaft (Helmholtz Gemeinschaft)
ID : NCT3.0_2015.2 SPL/RP
Pays : International
Organisme : Helmholtz-Gemeinschaft (Helmholtz Gemeinschaft)
ID : NCT3.0_2015.13 ImmunOmics
Pays : International
Organisme : Helmholtz-Gemeinschaft (Helmholtz Gemeinschaft)
ID : NCT3.0_2015.2 SPL/RP
Pays : International
Organisme : José Carreras Leukämie-Stiftung (Deutsche José Carreras Leukämie-Stiftung)
ID : R14/23
Pays : International
Organisme : Deutsche Krebshilfe (German Cancer Aid)
ID : 112069
Pays : International

Références

Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010;10:37–50.
pubmed: 19956173 doi: 10.1038/nrc2764
Catovsky D, Miliani E, Okos A, Galton DA. Clinical significance of T-cells in chronic lymphocytic leukaemia. Lancet. 1974;2:751–2.
pubmed: 4143015 doi: 10.1016/S0140-6736(74)90944-1
Forconi F, Moss P. Perturbation of the normal immune system in patients with CLL. Blood. 2015;126:573–81.
pubmed: 26084672 doi: 10.1182/blood-2015-03-567388
Hofbauer JP, Heyder C, Denk U, Kocher T, Holler C, Trapin D, et al. Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia. 2011;25:1452–8.
pubmed: 21606964 doi: 10.1038/leu.2011.111
Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013;121:1612–21.
pubmed: 23247726 pmcid: 3587324 doi: 10.1182/blood-2012-09-457531
Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood. 2001;97:2777–83.
pubmed: 11313271 doi: 10.1182/blood.V97.9.2777
Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ. Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol. 2000;164:2200–6.
pubmed: 10657675 doi: 10.4049/jimmunol.164.4.2200
Os A, Burgler S, Ribes AP, Funderud A, Wang D, Thompson KM, et al. Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Rep. 2013;4:566–77.
pubmed: 23933259 doi: 10.1016/j.celrep.2013.07.011
Burgler S, Gimeno A, Parente-Ribes A, Wang D, Os A, Devereux S, et al. Chronic lymphocytic leukemia cells express CD38 in response to Th1 cell-derived IFN-gamma by a T-bet-dependent mechanism. J Immunol. 2015;194:827–35.
pubmed: 25505279 doi: 10.4049/jimmunol.1401350
Mackus WJ, Frakking FN, Grummels A, Gamadia LE, De Bree GJ, Hamann D, et al. Expansion of CMV-specific CD8+CD45RA+CD27− T cells in B-cell chronic lymphocytic leukemia. Blood. 2003;102:1057–63.
pubmed: 12689926 doi: 10.1182/blood-2003-01-0182
Del Giudice I, Chiaretti S, Tavolaro S, De Propris MS, Maggio R, Mancini F, et al. Spontaneous regression of chronic lymphocytic leukemia: clinical and biologic features of 9 cases. Blood. 2009;114:638–46.
pubmed: 19387007 doi: 10.1182/blood-2008-12-196568
Burkhardt UE, Hainz U, Stevenson K, Goldstein NR, Pasek M, Naito M, et al. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells. J Clin Invest. 2013;123:3756–65.
pubmed: 23912587 pmcid: 3754265 doi: 10.1172/JCI69098
Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014;124:453–62.
pubmed: 24891321 pmcid: 4102716 doi: 10.1182/blood-2014-04-567933
Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118:2427–37.
pubmed: 18551193 pmcid: 2423865
Ramsay AG, Evans R, Kiaii S, Svensson L, Hogg N, Gribben JG. Chronic lymphocytic leukemia cells induce defective LFA-1-directed T-cell motility by altering Rho GTPase signaling that is reversible with lenalidomide. Blood. 2013;121:2704–14.
pubmed: 23325833 pmcid: 3617635 doi: 10.1182/blood-2012-08-448332
Brusa D, Serra S, Coscia M, Rossi D, D’Arena G, Laurenti L, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98:953–63.
pubmed: 23300177 pmcid: 3669453 doi: 10.3324/haematol.2012.077537
te Raa GD, Pascutti MF, Garcia-Vallejo JJ, Reinen E, Remmerswaal EB, ten Berge IJ, et al. CMV-specific CD8+T-cell function is not impaired in chronic lymphocytic leukemia. Blood. 2014;123:717–24.
doi: 10.1182/blood-2013-08-518183
Pourgheysari B, Bruton R, Parry H, Billingham L, Fegan C, Murray J, et al. The number of cytomegalovirus-specific CD4+T cells is markedly expanded in patients with B-cell chronic lymphocytic leukemia and determines the total CD4+T-cell repertoire. Blood. 2010;116:2968–74.
pubmed: 20562332 doi: 10.1182/blood-2009-12-257147
Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117:563-74.
pubmed: 25417158 pmcid: 4243051 doi: 10.1016/j.cell.2014.10.026
Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA. 2002;99:6955–60.
pubmed: 12011454 doi: 10.1073/pnas.102181599 pmcid: 124510
Gorgun G, Ramsay AG, Holderried TA, Zahrieh D, Le Dieu R, Liu F, et al. E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci USA. 2009;106:6250–5.
pubmed: 19332800 doi: 10.1073/pnas.0901166106 pmcid: 2669383
McClanahan F, Riches JC, Miller S, Day WP, Kotsiou E, Neuberg D, et al. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Emicro-TCL1 CLL mouse model. Blood. 2015;126:212–21.
pubmed: 25979947 pmcid: 4497962 doi: 10.1182/blood-2015-02-626754
Hanna BS, McClanahan F, Yazdanparast H, Zaborsky N, Kalter V, Rossner PM, et al. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia. 2016;30:570–9.
pubmed: 26522085 doi: 10.1038/leu.2015.305
Knudsen PB, Hanna B, Ohl S, Sellner L, Zenz T, Dohner H, et al. Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton. Leukemia. 2014;28:1289–98.
pubmed: 24280868 doi: 10.1038/leu.2013.360
McClanahan F, Hanna B, Miller S, Clear AJ, Lichter P, Gribben JG, et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood. 2015;126:203–11.
pubmed: 25800048 pmcid: 4497961 doi: 10.1182/blood-2015-01-622936
Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68:855–67.
pubmed: 1547487 doi: 10.1016/0092-8674(92)90029-C
Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol. 2003;4:1191–8.
pubmed: 14625547 doi: 10.1038/ni1009
Ye Q, Song DG, Poussin M, Yamamoto T, Best A, Li C, et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin Cancer Res. 2014;20:44–55.
pubmed: 24045181 doi: 10.1158/1078-0432.CCR-13-0945
Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 2016;354:1160–5.
pubmed: 27789795 pmcid: 5484795 doi: 10.1126/science.aaf2807
Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.
pubmed: 11323675 doi: 10.1038/35074122
Buschle M, Campana D, Carding SR, Richard C, Hoffbrand AV, Brenner MK. Interferon gamma inhibits apoptotic cell death in B cell chronic lymphocytic leukemia. J Exp Med. 1993;177:213–8.
pubmed: 7678114 doi: 10.1084/jem.177.1.213
Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015;36:265–76.
pubmed: 25797516 pmcid: 4393798 doi: 10.1016/j.it.2015.02.008
Caligaris-Cappio F. Inflammation, the microenvironment and chronic lymphocytic leukemia. Haematologica. 2011;96:353–5.
pubmed: 21357715 pmcid: 3046264 doi: 10.3324/haematol.2010.039446
Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell. 2016;166:1500–11 e9.
pubmed: 27610572 pmcid: 5019125 doi: 10.1016/j.cell.2016.08.052
Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018;48:202–13.
pubmed: 29466753 pmcid: 5826622 doi: 10.1016/j.immuni.2018.01.007
Gordon CL, Miron M, Thome JJ, Matsuoka N, Weiner J, Rak MA, et al. Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection. J Exp Med. 2017;214:651–67.
pubmed: 28130404 pmcid: 5339671 doi: 10.1084/jem.20160758
Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity. 2013;38:187–97.
doi: 10.1016/j.immuni.2012.09.020 pubmed: 23260195
Thome JC, Yudanin N, Ohmura Y, Kubota M, Grinshpun B, Sathaliyawala T, et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell. 2014;159:814–28.
pubmed: 25417158 pmcid: 4243051 doi: 10.1016/j.cell.2014.10.026
Patten PE, Ferrer G, Chen SS, Simone R, Marsilio S, Yan XJ, et al. Chronic lymphocytic leukemia cells diversify and differentiate in vivo via a nonclassical Th1-dependent, Bcl-6-deficient process. JCI Insight. 2016;1:4.
doi: 10.1172/jci.insight.86288
Kocher T, Asslaber D, Zaborsky N, Flenady S, Denk U, Reinthaler P, et al. CD4+T cells, but not non-classical monocytes, are dispensable for the development of chronic lymphocytic leukemia in the TCL1-tg murine model. Leukemia. 2016;30:1409–13.
pubmed: 26522084 doi: 10.1038/leu.2015.307
Serrano D, Monteiro J, Allen SL, Kolitz J, Schulman P, Lichtman SM, et al. Clonal expansion within the CD4+CD57+ and CD8+CD57+ T cell subsets in chronic lymphocytic leukemia. J Immunol. 1997;158:1482–9.
pubmed: 9013995
Vardi A, Vlachonikola E, Karypidou M, Stalika E, Bikos V, Gemenetzi K, et al. Restrictions in the T-cell repertoire of chronic lymphocytic leukemia: high-throughput immunoprofiling supports selection by shared antigenic elements. Leukemia. 2016;31:1555.
pubmed: 27904140 doi: 10.1038/leu.2016.362
Blanco G, Vardi A, Puiggros A, Gómez-Llonín A, Muro M, Rodríguez-Rivera M, et al. Restricted T cell receptor repertoire in CLL-like monoclonal B cell lymphocytosis and early stage CLL. Oncoimmunology. 2018;7:e1432328.
pubmed: 29872562 pmcid: 5980379 doi: 10.1080/2162402X.2018.1432328
Vardi A, Agathangelidis A, Stalika E, Karypidou M, Siorenta A, Anagnostopoulos A, et al. Antigen selection shapes the T-cell repertoire in chronic lymphocytic leukemia. Clin Cancer Res. 2016;22:167–74.
pubmed: 26338994 doi: 10.1158/1078-0432.CCR-14-3017
Kowalewski DJ, Schuster H, Backert L, Berlin C, Kahn S, Kanz L, et al. HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). PNAS. 2015;112:E166–E75.
pubmed: 25548167 doi: 10.1073/pnas.1416389112
Welsh RM, Che JW, Brehm MA, Selin LK. Heterologous immunity between viruses. Immunol Rev. 2010;235:244–66.
pubmed: 20536568 pmcid: 2917921 doi: 10.1111/j.0105-2896.2010.00897.x
Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129:3419–27.
pubmed: 28424162 pmcid: 5492091 doi: 10.1182/blood-2017-02-765685
Wierz M, Pierson S, Guyonnet L, Viry E, Lequeux A, Oudin A, et al. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018;131:1617–21.
pubmed: 29439955 pmcid: 5887766 doi: 10.1182/blood-2017-06-792267
Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.
pubmed: 21739672 doi: 10.1038/ni.2035

Auteurs

Bola S Hanna (BS)

Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany. b.hanna@dkfz.de.

Philipp M Roessner (PM)

Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Haniyeh Yazdanparast (H)

Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Dolors Colomer (D)

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain.

Elias Campo (E)

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain.

Sabrina Kugler (S)

Internal Medicine III, University of Ulm, Ulm, Germany.

Deyan Yosifov (D)

Internal Medicine III, University of Ulm, Ulm, Germany.

Stephan Stilgenbauer (S)

Internal Medicine III, University of Ulm, Ulm, Germany.

Manfred Schmidt (M)

Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.

Richard Gabriel (R)

Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.

Peter Lichter (P)

Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Martina Seiffert (M)

Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany. m.seiffert@dkfz.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH