Pushing the limits of detection for proteins secreted from single cells using quantum dots.
Journal
The Analyst
ISSN: 1364-5528
Titre abrégé: Analyst
Pays: England
ID NLM: 0372652
Informations de publication
Date de publication:
28 Jan 2019
28 Jan 2019
Historique:
pubmed:
3
10
2018
medline:
29
5
2019
entrez:
2
10
2018
Statut:
ppublish
Résumé
Single cell analysis methods are increasingly being utilized to investigate how individual cells process information and respond to diverse stimuli. Soluble proteins play a critical role in controlling cell populations and tissues, but directly monitoring secretion is technically challenging. Microfabricated well arrays have been developed to assess secretion at the single cell level, but these systems are limited by low detection sensitivity. Semiconductor quantum dots (QD) exhibit remarkably bright and photostable luminescence signal, but to date they have not been evaluated in single cell secretion studies using microfabricated well arrays. Here, we used QDs in a sandwich immunoassay to detect secretion of the soluble cytokine tumor necrosis factor-α (TNF-α) from single cells. To enhance detection sensitivity, we employed two different strategies. First, we used a unique single QD imaging approach, which provided a detection threshold (180 attomolar) that was >100-fold lower than previously reported results using QDs. We also amplified QD binding to each captured TNF-α molecule using the bioorthogonal cycloaddition reaction between trans-cyclooctene and tetrazine, which further lowered detection threshold to 60 attomolar. This is 6 orders of magnitude more sensitive than organic fluorophores that have been used for single cell secretion studies, and far surpasses single molecule resolution within sub-picoliter microwells that are used to assess single cell secretion. Finally, single cell secretion studies were performed using phorbol 12-myristate 13-acetate (PMA) differentiated and lipopolysaccharide (LPS) activated U-937 cells. TNF-α secretion was detected from 3-fold more single cells using the QD-based method in comparison to rhodamine, which was accomplished by extending sensitivity into the range of ∼2 to 10 000 molecules captured per microwell. In future work, we will apply this technique to assess immune cell secretion dynamics under diverse stimuli and disease settings. We will also incorporate multiplexing capabilities to evaluate the secretome at the resolution of single molecules.
Identifiants
pubmed: 30270391
doi: 10.1039/c8an01083h
pmc: PMC6349524
mid: NIHMS991291
doi:
Substances chimiques
Tumor Necrosis Factor-alpha
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
980-989Subventions
Organisme : NIDCR NIH HHS
ID : DP2 DE023319
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA062203
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA206953
Pays : United States
Références
Nature. 2014 Jun 19;510(7505):363-9
pubmed: 24919153
Nat Rev Genet. 2016 Mar;17(3):175-88
pubmed: 26806412
Methods Mol Biol. 2012;853:211-35
pubmed: 22323150
Biochem J. 1992 Jun 15;284 ( Pt 3):905-10
pubmed: 1622406
Chem Commun (Camb). 2010 Sep 7;46(33):6126-8
pubmed: 20664878
Nat Biomed Eng. 2017;1:
pubmed: 29082104
Nat Med. 2011 Jun;17(6):738-43
pubmed: 21602800
Science. 2016 Apr 8;352(6282):189-96
pubmed: 27124452
ACS Nano. 2011 Apr 26;5(4):3204-13
pubmed: 21351804
ACS Appl Mater Interfaces. 2017 Mar 29;9(12):10418-10426
pubmed: 28266828
Lab Chip. 2010 Jun 7;10(11):1391-400
pubmed: 20376398
Nature. 2009 Nov 26;462(7272):461-4
pubmed: 19940916
Immunology. 2016 Feb;147(2):133-40
pubmed: 26551575
Nat Biotechnol. 2006 Jun;24(6):703-7
pubmed: 16699501
Sci Signal. 2015 Jun 16;8(381):ra59
pubmed: 26082435
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1607-12
pubmed: 22160692
Sci Transl Med. 2011 Feb 23;3(71):71ra16
pubmed: 21346169
J Neurosci. 2016 Feb 03;36(5):1730-46
pubmed: 26843653
Cell. 2010 May 14;141(4):559-63
pubmed: 20478246
Biosens Bioelectron. 2017 Nov 15;97:143-149
pubmed: 28587929
Nat Mater. 2008 Jun;7(6):442-53
pubmed: 18497851
Trends Immunol. 2017 Feb;38(2):140-149
pubmed: 28094102
Integr Biol (Camb). 2014 Apr;6(4):388-98
pubmed: 24522233
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E607-15
pubmed: 25646488
Anal Chem. 2013 Feb 19;85(4):2548-56
pubmed: 23339603
Bioconjug Chem. 2009 Feb;20(2):222-30
pubmed: 19173652
Bioconjug Chem. 2015 Feb 18;26(2):352-60
pubmed: 25584926
Science. 2010 Jul 30;329(5991):533-8
pubmed: 20671182
Nat Biotechnol. 2004 Jan;22(1):47-52
pubmed: 14704706
Talanta. 2007 Mar 15;71(4):1494-9
pubmed: 19071481
Science. 2014 Jun 20;344(6190):1396-401
pubmed: 24925914
ACS Nano. 2010 Jan 26;4(1):488-94
pubmed: 20041634
Nat Nanotechnol. 2010 Sep;5(9):660-5
pubmed: 20676091
Cancer Cell. 2016 Apr 11;29(4):563-573
pubmed: 27070703
Nat Biotechnol. 2012 Aug;30(8):777-82
pubmed: 22820318
Integr Biol (Camb). 2013 Oct;5(10):1272-81
pubmed: 23995780
Nature. 2015 Oct 1;526(7571):131-5
pubmed: 26416748
Science. 2003 Sep 26;301(5641):1884-6
pubmed: 14512622
Angew Chem Int Ed Engl. 2009;48(38):7013-6
pubmed: 19697389
Science. 2003 Oct 17;302(5644):442-5
pubmed: 14564008
Nat Genet. 2017 May;49(5):708-718
pubmed: 28319088
Integr Biol (Camb). 2016 Jul 11;8(7):751-60
pubmed: 27291691
Nat Biotechnol. 2014 Apr;32(4):381-386
pubmed: 24658644
Lab Chip. 2014 Sep 21;14(18):3582-8
pubmed: 25057779
Nat Biotechnol. 2010 Jun;28(6):595-9
pubmed: 20495550
Nat Rev Drug Discov. 2016 Mar;15(3):204-16
pubmed: 26669673
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13679-13684
pubmed: 29229836
Nat Methods. 2010 Apr;7(4):275-85
pubmed: 20354518
PLoS One. 2009 Dec 23;4(12):e8432
pubmed: 20037651
Nat Immunol. 2014 Feb;15(2):128-35
pubmed: 24448570
Chem Rev. 2015 Oct 14;115(19):10530-74
pubmed: 26313138
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 May-Jun;2(3):291-304
pubmed: 20336708
Nat Mater. 2005 Jun;4(6):435-46
pubmed: 15928695