Caval to pulmonary 3D flow distribution in patients with Fontan circulation and impact of potential 4D flow MRI error sources.
Adolescent
Adult
Algorithms
Blood Flow Velocity
Child
Coronary Circulation
Female
Fontan Procedure
Heart Defects, Congenital
/ diagnostic imaging
Hemodynamics
Humans
Image Interpretation, Computer-Assisted
/ methods
Image Processing, Computer-Assisted
/ methods
Imaging, Three-Dimensional
/ methods
Magnetic Resonance Imaging
Male
Motion
Pulmonary Artery
/ diagnostic imaging
Pulmonary Circulation
Reproducibility of Results
Young Adult
4D flow MRI
Fontan circulation
background phase errors
congenital heart disease
flow distribution
probabilistic tracking
segmentation
uncertainty
velocity noise
Journal
Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
received:
15
02
2017
revised:
07
06
2018
accepted:
26
06
2018
pubmed:
3
10
2018
medline:
18
12
2019
entrez:
3
10
2018
Statut:
ppublish
Résumé
Uneven flow distribution in patients with Fontan circulation is suspected to lead to complications. 4D flow MRI offers evaluation using time-resolved pathlines; however, the potential error is not well understood. The aim of this study was to systematically assess variability in flow distribution caused by well-known sources of error. 4D flow MRI was acquired in 14 patients with Fontan circulation. Flow distribution was quantified by the % of caval venous flow pathlines reaching the left and right pulmonary arteries. Impact of data acquisition and data processing uncertainties were investigated by (1) probabilistic 4D blood flow tracking at varying noise levels, (2) down-sampling to mimic acquisition at different spatial resolutions, (3) pathline calculation with and without eddy current correction, and (4) varied segmentation of the Fontan geometry to mimic analysis errors. Averaged among the cohort, uncertainties accounted for flow distribution errors from noise ≤3.2%, low spatial resolution ≤2.3% to 3.8%, eddy currents ≤6.4%, and inaccurate segmentation ≤3.9% to 9.1% (dilation and erosion, respectively). In a worst-case scenario (maximum additive errors for all 4 sources), flow distribution errors were as high as 22.5%. Inaccuracies related to postprocessing (segmentation, eddy currents) resulted in the largest potential error (≤15.5% combined) whereas errors related to data acquisition (noise, low spatial resolution) had a lower impact (≤5.5%-7.0% combined). Whereas it is unlikely that these errors will be additive or affect the identification of severe asymmetry, these results illustrate the importance of eddy current correction and accurate segmentation to minimize Fontan flow distribution errors.
Identifiants
pubmed: 30277276
doi: 10.1002/mrm.27455
pmc: PMC6289652
mid: NIHMS978897
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1205-1218Subventions
Organisme : National Institutes of Health, National Heart, Lung and Blood Institute (NHLBI)
ID : T32HL134633
Pays : International
Organisme : National Institutes of Health, National Heart, Lung and Blood Institute (NHLBI)
ID : K25HL119608
Pays : International
Organisme : NHLBI NIH HHS
ID : K25 HL119608
Pays : United States
Organisme : National Institutes of Health, National Heart, Lung and Blood Institute (NHLBI)
ID : R01HL115828
Pays : International
Organisme : NHLBI NIH HHS
ID : R01 HL115828
Pays : United States
Organisme : National Institutes of Health, National Heart, Lung and Blood Institute (NHLBI)
ID : (T32HL134633, R01HL115828, K25HL119608)
Pays : International
Organisme : NCATS NIH HHS
ID : UL1 TR001422
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL134633
Pays : United States
Informations de copyright
© 2018 International Society for Magnetic Resonance in Medicine.
Références
Eur J Cardiothorac Surg. 2011 Feb;39(2):206-12
pubmed: 20598560
Ann Thorac Cardiovasc Surg. 2008 Feb;14(1):29-31
pubmed: 18292737
Med Image Anal. 2011 Oct;15(5):720-8
pubmed: 21719342
J Magn Reson Imaging. 2017 Nov;46(5):1516-1525
pubmed: 28225577
J Magn Reson Imaging. 2008 Nov;28(5):1226-32
pubmed: 18972331
Magn Reson Med. 2002 Jun;47(6):1202-10
pubmed: 12111967
Lancet. 1986 Feb 8;1(8476):307-10
pubmed: 2868172
Thorax. 1971 May;26(3):240-8
pubmed: 5089489
Circulation. 1995 Sep 1;92(5):1217-22
pubmed: 7648668
J Magn Reson Imaging. 1993 May-Jun;3(3):521-30
pubmed: 8324312
J Cardiovasc Magn Reson. 2014 Jan 04;16:2
pubmed: 24387626
J Thorac Cardiovasc Surg. 2009 Jul;138(1):96-102
pubmed: 19577063
Heart. 2005 Jun;91(6):839-46
pubmed: 15894794
Pediatr Cardiol. 2001 Jul-Aug;22(4):343-6
pubmed: 11455406
Ann Thorac Surg. 2005 Nov;80(5):1597-603
pubmed: 16242423
Magn Reson Med. 1995 Dec;34(6):910-4
pubmed: 8598820
J Am Coll Cardiol. 2011 Nov 15;58(21):2241-7
pubmed: 22078432
Curr Cardiol Rep. 2016 May;18(5):44
pubmed: 27002620
Magn Reson Med. 1998 Feb;39(2):300-8
pubmed: 9469714
J Comput Assist Tomogr. 2016 Jan-Feb;40(1):102-8
pubmed: 26466113
Radiology. 2013 Apr;267(1):67-75
pubmed: 23297331
Ann Thorac Surg. 1997 Apr;63(4):960-3
pubmed: 9124971
J Magn Reson Imaging. 2007 Apr;25(4):824-31
pubmed: 17345635
Magn Reson Med. 2014 Aug;72(2):522-33
pubmed: 24006309
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):416-23
pubmed: 20879427
Pediatr Radiol. 2016 Oct;46(11):1507-19
pubmed: 27350377
Tex Heart Inst J. 2009;36(5):480-2
pubmed: 19876435
J Biomech. 2015 Sep 18;48(12):2984-9
pubmed: 26298492