Cell-free microRNA-148a is associated with renal allograft dysfunction: Implication for biomarker discovery.
Adult
Allografts
Atrophy
/ blood
Case-Control Studies
Circulating MicroRNA
/ blood
Cross-Sectional Studies
Female
Fibrosis
/ blood
Genetic Markers
Graft Rejection
/ blood
Humans
Kidney Diseases
/ blood
Kidney Transplantation
/ adverse effects
Kidney Tubules
/ metabolism
Male
MicroRNAs
/ genetics
Middle Aged
Treatment Outcome
Young Adult
circulating microRNA
diagnosis biomarker
interstitial fibrosis and tubular atrophy
renal fibrosis
renal transplant
Journal
Journal of cellular biochemistry
ISSN: 1097-4644
Titre abrégé: J Cell Biochem
Pays: United States
ID NLM: 8205768
Informations de publication
Date de publication:
04 2019
04 2019
Historique:
received:
11
07
2018
accepted:
19
09
2018
pubmed:
16
10
2018
medline:
23
7
2020
entrez:
16
10
2018
Statut:
ppublish
Résumé
Chronic allograft dysfunction (CAD), the foremost cause of renal graft loss worldwide, is a serious challenge for most of the recipients. As the epigenetic era is emerging, epigenetic biomarkers especially microRNAs (miRNAs) may reflect the current stage of the disease and patient's therapy response. The current study investigated the potential significance of circulating miRNA-148a in predicting the renal graft function. Circulating miRNAs were isolated from 53 plasma samples of recipients with histologically validated interstitial fibrosis and tubular atrophy (IFTA, n = 26), and recipients with stable graft function (SGF, n = 27), and also healthy individuals ( n = 15). The level of miRNA-148a was evaluated by the quantitative polymerase chain reaction (qPCR) and correlated with clinical and histological parameters. Significantly, miRNA-148a decreased in IFTA compared with SGF subjects (P < 0.001). MiRNA-148a levels indicated a significant association with serum creatinine levels ( r = 0.451, P = 0.021) and glomerular filtration rate ( r = -0.520, P = 0.006). MiRNA-148a expression levels could discriminate IFTA cases from SGF individuals with an area under the curve of 0.89 ( P < 0.001), 97% sensitivity, and 72% specificity. A number of predicted targets that might be involved in CAD by miRNA-148a were predicted. Plasma cell-free miRNA-148a correlated with renal function and histological grades; therefore, it may be further investigated as a novel noninvasive molecular marker of the progression to IFTA in renal transplant recipients; moreover, the emerging biomarker may become a therapeutic target in the future clinic.
Sections du résumé
BACKGROUND
Chronic allograft dysfunction (CAD), the foremost cause of renal graft loss worldwide, is a serious challenge for most of the recipients. As the epigenetic era is emerging, epigenetic biomarkers especially microRNAs (miRNAs) may reflect the current stage of the disease and patient's therapy response. The current study investigated the potential significance of circulating miRNA-148a in predicting the renal graft function.
DESIGN AND METHODS
Circulating miRNAs were isolated from 53 plasma samples of recipients with histologically validated interstitial fibrosis and tubular atrophy (IFTA, n = 26), and recipients with stable graft function (SGF, n = 27), and also healthy individuals ( n = 15). The level of miRNA-148a was evaluated by the quantitative polymerase chain reaction (qPCR) and correlated with clinical and histological parameters.
RESULTS
Significantly, miRNA-148a decreased in IFTA compared with SGF subjects (P < 0.001). MiRNA-148a levels indicated a significant association with serum creatinine levels ( r = 0.451, P = 0.021) and glomerular filtration rate ( r = -0.520, P = 0.006). MiRNA-148a expression levels could discriminate IFTA cases from SGF individuals with an area under the curve of 0.89 ( P < 0.001), 97% sensitivity, and 72% specificity. A number of predicted targets that might be involved in CAD by miRNA-148a were predicted.
CONCLUSION
Plasma cell-free miRNA-148a correlated with renal function and histological grades; therefore, it may be further investigated as a novel noninvasive molecular marker of the progression to IFTA in renal transplant recipients; moreover, the emerging biomarker may become a therapeutic target in the future clinic.
Substances chimiques
Circulating MicroRNA
0
Genetic Markers
0
MIRN148 microRNA, human
0
MicroRNAs
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5737-5746Informations de copyright
© 2018 Wiley Periodicals, Inc.