Cerebrovascular assessment of patients undergoing shoulder surgery in beach chair position using a multiparameter transcranial Doppler approach.
Adolescent
Adult
Aged
Aged, 80 and over
Anesthesia
/ methods
Arterial Pressure
Blood Flow Velocity
Brain
/ pathology
Brain Ischemia
/ physiopathology
Cerebrovascular Circulation
Female
Hemodynamics
Humans
Male
Middle Aged
Monitoring, Physiologic
/ methods
Oxygen
/ metabolism
Patient Positioning
/ methods
Propofol
/ therapeutic use
Risk
Shoulder
/ surgery
Sitting Position
Ultrasonography, Doppler
Ultrasonography, Doppler, Transcranial
/ methods
Young Adult
Beach chair position
Cerebral autoregulation
Non-invasive intracranial pressure
Transcranial Doppler
Journal
Journal of clinical monitoring and computing
ISSN: 1573-2614
Titre abrégé: J Clin Monit Comput
Pays: Netherlands
ID NLM: 9806357
Informations de publication
Date de publication:
Aug 2019
Aug 2019
Historique:
received:
21
08
2018
accepted:
10
10
2018
pubmed:
18
10
2018
medline:
9
4
2020
entrez:
18
10
2018
Statut:
ppublish
Résumé
Although the beach-chair position (BCP) is widely used during shoulder surgery, it has been reported to associate with a reduction in cerebral blood flow, oxygenation, and risk of brain ischaemia. We assessed cerebral haemodynamics using a multiparameter transcranial Doppler-derived approach in patients undergoing shoulder surgery. 23 anaesthetised patients (propofol (2 mg/kg)) without history of neurologic pathology undergoing elective shoulder surgery were included. Arterial blood pressure (ABP, monitored with a finger-cuff plethysmograph calibrated at the auditory meatus level) and cerebral blood flow velocity (FV, monitored in the middle cerebral artery) were recorded in supine and in BCP. All subjects underwent interscalene block ipsilateral to the side of FV measurement. We evaluated non-invasive intracranial pressure (nICP) and cerebral perfusion pressure (nCPP) calculated with a black-box mathematical model; critical closing pressure (CrCP); diastolic closing margin (DCM-pressure reserve available to avoid diastolic flow cessation); cerebral autoregulation index (Mxa); pulsatility index (PI). Significant changes occured for DCM [mean decrease of 6.43 mm Hg (p = 0.01)] and PI [mean increase of 0.11 (p = 0.05)]. ABP, FV, nICP, nCPP and CrCP showed a decreasing trend. Cerebral autoregulation was dysfunctional (Mxa > 0.3) and PI deviated from normal ranges (PI > 0.8) in both phases. ABP and nCPP values were low (< 60 mm Hg) in both phases. Changes between phases did not result in CrCP reaching diastolic ABP, therefore DCM did not reach critical values (≤ 0 mm Hg). BCP resulted in significant cerebral haemodynamic changes. If left untreated, reduction in cerebral blood flow may result in brain ischaemia and post-operative neurologic deficit.
Identifiants
pubmed: 30328561
doi: 10.1007/s10877-018-0211-7
pii: 10.1007/s10877-018-0211-7
pmc: PMC6602988
doi:
Substances chimiques
Oxygen
S88TT14065
Propofol
YI7VU623SF
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
615-625Références
Anesth Analg. 2003 Mar;96(3):899-902, table of contents
pubmed: 12598282
J Neurosurg. 1974 Nov;41(5):597-606
pubmed: 4214313
Orthopedics. 2009 Apr;32(4):
pubmed: 19388618
Stroke. 1996 Oct;27(10):1829-34
pubmed: 8841340
J Clin Pharmacol. 1994 May;34(5):375-86
pubmed: 8089249
J Neurosurg. 1987 Jun;66(6):907-14
pubmed: 3572519
Br J Anaesth. 2000 Mar;84(3):354-7
pubmed: 10793596
Anesth Analg. 2015 Jan;120(1):176-85
pubmed: 25268397
Anesthesiology. 1995 Jul;83(1):66-76
pubmed: 7605020
Anaesth Intensive Care. 2010 May;38(3):486-91
pubmed: 20514957
Anesth Analg. 1999 Feb;88(2):341-5
pubmed: 9972753
J Neurotrauma. 2007;24 Suppl 1:S59-64
pubmed: 17511547
Arthroscopy. 2008 Apr;24(4):481-2
pubmed: 18375282
Neurocrit Care. 2014 Feb;20(1):40-8
pubmed: 24248737
Neurocrit Care. 2017 Jun;26(3):330-338
pubmed: 28000131
Anesthesiology. 2008 Jul;109(1):44-53
pubmed: 18580171
J Clin Monit Comput. 2017 Oct;31(5):873-875
pubmed: 27796526
J Appl Physiol (1985). 1997 Apr;82(4):1256-69
pubmed: 9104864
J Clin Anesth. 2005 Sep;17(6):463-9
pubmed: 16171668
J Neurosurg. 2001 Nov;95(5):756-63
pubmed: 11702864
Reg Anesth Pain Med. 2011 Sep-Oct;36(5):430-5
pubmed: 21857267
J Neuroimaging. 2013 Jul;23(3):466-72
pubmed: 23157483
Anesth Analg. 1993 Oct;77(4 Suppl):S21-9
pubmed: 8214693
Acta Anaesthesiol Scand. 2006 Mar;50(3):306-12
pubmed: 16480463
Neurocrit Care. 2012 Aug;17(1):58-66
pubmed: 22311229
Br J Anaesth. 1997 Oct;79(4):469-72
pubmed: 9389265
Stereotact Funct Neurosurg. 1996;66(4):184-92
pubmed: 9144873
Arthroscopy. 2009 Aug;25(8):891-6
pubmed: 19664509
Asian J Anesthesiol. 2017 Mar;55(1):13-16
pubmed: 28846536
Br J Anaesth. 1976 Aug;48(8):719-34
pubmed: 7284
J Cereb Blood Flow Metab. 1997 Oct;17(10):1127-31
pubmed: 9346438
Neurocrit Care. 2009;10(3):373-86
pubmed: 19127448
Anesth Analg. 2013 Jun;116(6):1317-24
pubmed: 23477958
Can J Anaesth. 2011 Nov;58(11):993-1000
pubmed: 21863352
J Clin Anesth. 2016 Sep;33:31-6
pubmed: 27555129
Acta Neurochir Suppl. 2012;114:283-8
pubmed: 22327709
Ultrasound Med Biol. 1994;20(4):391-9
pubmed: 8085296
J Clin Monit Comput. 2017 Oct;31(5):877-884
pubmed: 27738950
Stroke. 2003 Sep;34(9):2138-44
pubmed: 12920261
J Shoulder Elbow Surg. 2018 Apr;27(4):692-700
pubmed: 29396097
Neurosurgery. 2004 Jun;54(6):1512-5; discussion 1515-6
pubmed: 15157310
Am J Physiol. 1951 Feb;164(2):330-44
pubmed: 14810938
J Cereb Blood Flow Metab. 2013 Feb;33(2):235-43
pubmed: 23149558
Arthroscopy. 2002 Feb;18(2 Suppl 1):88-95
pubmed: 11828349
Rev Bras Anestesiol. 2016 Sep-Oct;66(5):470-4
pubmed: 27432526
Anesth Analg. 2012 Jun;114(6):1301-3
pubmed: 22052983
Cerebrovasc Brain Metab Rev. 1990 Summer;2(2):161-92
pubmed: 2201348
Stroke. 1997 Dec;28(12):2465-72
pubmed: 9412634