Multiple-Enzyme-Digestion Strategy Improves Accuracy and Sensitivity of Label- and Standard-Free Absolute Quantification to a Level That Is Achievable by Analysis with Stable Isotope-Labeled Standard Spiking.
ADME
FASP
MED FASP
drug metabolizing enzymes
drug transporter
quantitative analysis
stable isotope labeling
total protein approach (TPA)
Journal
Journal of proteome research
ISSN: 1535-3907
Titre abrégé: J Proteome Res
Pays: United States
ID NLM: 101128775
Informations de publication
Date de publication:
04 01 2019
04 01 2019
Historique:
pubmed:
20
10
2018
medline:
20
2
2020
entrez:
19
10
2018
Statut:
ppublish
Résumé
Quantification of individual proteins is an essential task in understanding biological processes. For example, determination of concentrations of proteins transporting and metabolizing xenobiotics is a prerequisite for drug disposition predictions in humans based on in vitro data. So far, this task has frequently been accomplished by targeted proteomics. This type of analyses requires preparation of stable isotope labeled standards for each protein of interest. The selection of appropriate standard peptides is usually tedious and the number of proteins that can be studied in a single experiment by these approaches is limited. In addition, incomplete digestion of proteins often affects the accuracy of the quantification. To circumvent these constrains in proteomic protein quantification, label- and standard-free approaches, such as "total protein approach" (TPA) have been proposed. Here we directly compare an approach using stable isotope labeled (SIL) standards and TPA for quantification of transporters and enzymes in human liver samples within the same LC-MS/MS runs. We show that TPA is a convenient alternative to SIL-based methods. Optimization of the sample preparation beyond commonly used single tryptic digestion, by adding consecutive cleavage steps, improves accuracy and reproducibility of the TPA method to a level, which is achievable by analysis using stable isotope-labeled standard spiking.
Identifiants
pubmed: 30336047
doi: 10.1021/acs.jproteome.8b00549
doi:
Substances chimiques
Peptides
0
Endopeptidases
EC 3.4.-
Trypsin
EC 3.4.21.4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM