AP-1 and the injury response of the GFAP gene.
Alexander disease
RRID:IMSR_JAX:003487
RRID:IMSR_TAC:fvb
STAT3 transcription factor
aging
brain injuries
cold injury
female
genetic
glial fibrillary acidic protein
gliosis
kainic acid
mice
seizures
sex characteristics
transcription
transcription factor AP-1
transgenic
Journal
Journal of neuroscience research
ISSN: 1097-4547
Titre abrégé: J Neurosci Res
Pays: United States
ID NLM: 7600111
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
received:
31
05
2018
revised:
17
09
2018
accepted:
18
09
2018
pubmed:
23
10
2018
medline:
2
7
2020
entrez:
23
10
2018
Statut:
ppublish
Résumé
Increased GFAP gene expression is a common feature of CNS injury, resulting in its use as a reporter to investigate mechanisms producing gliosis. AP-1 transcription factors are among those proposed to participate in mediating the reactive response. Prior studies found a consensus AP-1 binding site in the GFAP promoter to be essential for activity of reporter constructs transfected into cultured cells, but to have little to no effect on basal transgene expression in mice. Since cultured astrocytes display some properties of reactive astrocytes, these findings suggested that AP-1 transcription factors are critical for the upregulation of GFAP in injury, but not for its resting level of expression. We have examined this possibility by comparing the injury response in mice of lacZ transgenes driven by human GFAP promoters that contain the wild-type AP-1 binding site to those in which the site is mutated. An intact AP-1 site was found critical for a GFAP promoter response to the three different injury models used: physical trauma produced by cryoinjury, seizures produced by kainic acid, and chronic gliosis produced in an Alexander disease model. An unexpected additional finding was that the responses of the lacZ transgenes driven by the wild-type promoters were substantially less than that of the endogenous mouse GFAP gene. This suggests that the GFAP gene has previously unrecognized injury-responsive elements that reside further upstream of the transcription start site than the 2.2 kb present in the GFAP promoter segments used here.
Identifiants
pubmed: 30345544
doi: 10.1002/jnr.24338
pmc: PMC6289842
mid: NIHMS1507340
doi:
Substances chimiques
Glial Fibrillary Acidic Protein
0
Transcription Factor AP-1
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
149-161Subventions
Organisme : NINDS NIH HHS
ID : R01 NS039055
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS075062
Pays : United States
Informations de copyright
© 2018 Wiley Periodicals, Inc.
Références
Front Cell Neurosci. 2015 Aug 03;9:278
pubmed: 26283915
Neuron. 2004 Jul 8;43(1):57-67
pubmed: 15233917
J Neuropathol Exp Neurol. 2001 Jun;60(6):563-73
pubmed: 11398833
Exp Cell Res. 2007 Jun 10;313(10):2077-87
pubmed: 17498694
Sci Rep. 2015 Sep 21;5:14306
pubmed: 26387932
Epilepsy Behav. 2016 Feb;55:47-56
pubmed: 26736063
J Neurosci. 2006 Aug 9;26(32):8295-304
pubmed: 16899724
PLoS One. 2014 Jul 15;9(7):e102003
pubmed: 25025494
J Biol Chem. 2006 Dec 15;281(50):38634-43
pubmed: 17038307
Neurochem Int. 2004 Jul-Aug;45(2-3):203-42
pubmed: 15145538
Genetics. 2001 Sep;159(1):279-90
pubmed: 11560904
Neurotoxicology. 2011 Jan;32(1):130-9
pubmed: 20937303
Neurosci Lett. 2004 Sep 2;367(2):210-2
pubmed: 15331155
Exp Neurol. 2010 Jan;221(1):98-106
pubmed: 19837066
J Med Chem. 2014 Aug 28;57(16):6930-48
pubmed: 24831826
Ann Neurol. 2012 Nov;72(5):750-65
pubmed: 22941903
Brain Res. 2005 Aug 30;1054(2):103-15
pubmed: 16081055
Glia. 1995 Mar;13(3):174-84
pubmed: 7782103
Toxicol Pathol. 2001;29 Suppl:51-9
pubmed: 11695562
Am J Pathol. 1998 Feb;152(2):391-8
pubmed: 9466565
PLoS One. 2014 May 06;9(5):e96622
pubmed: 24802808
J Neurosci Res. 2006 Apr;83(5):744-53
pubmed: 16496373
Brain Res Mol Brain Res. 1990 May;7(4):277-86
pubmed: 2163003
Neurochem Res. 2004 Nov;29(11):2075-93
pubmed: 15662842
Mol Cells. 2008 May 31;25(3):376-84
pubmed: 18443417
J Neurosci. 1994 Jul;14(7):3998-4006
pubmed: 8027758
J Biol Chem. 2006 Jan 27;281(4):1956-63
pubmed: 16303762
ASN Neuro. 2013;5(1):e00109
pubmed: 23432455
Neurosci Res. 1999 Feb;33(2):137-45
pubmed: 10211779
New Biol. 1991 May;3(5):465-74
pubmed: 1883812
Trends Neurosci. 2009 Dec;32(12):638-47
pubmed: 19782411
Front Biosci. 2004 Jan 01;9:8-23
pubmed: 14766339
J Neurosci. 2008 Jan 2;28(1):264-78
pubmed: 18171944
Glia. 2013 Dec;61(12):2063-77
pubmed: 24123203
J Neurochem. 1993 Jul;61(1):160-6
pubmed: 8515262
J Neurosci. 2015 Feb 11;35(6):2817-29
pubmed: 25673868
J Cell Sci. 2004 Mar 15;117(Pt 8):1281-3
pubmed: 15020666
J Neurochem. 2007 Feb;100(3):720-6
pubmed: 17176261
Eur J Neurosci. 2006 Oct;24(8):2191-202
pubmed: 17074044
J Biol Chem. 2006 May 12;281(19):13126-33
pubmed: 16565071
J Neurosci. 2006 Oct 25;26(43):11162-73
pubmed: 17065456
J Comp Neurol. 2017 Aug 1;525(11):2592-2610
pubmed: 28425097
Lab Anim Sci. 1998 Feb;48(1):34-7
pubmed: 9517887
J Neurochem. 1994 Dec;63(6):2021-7
pubmed: 7964719
PLoS One. 2013 Jun 24;8(6):e66873
pubmed: 23826164
J Neurosci. 1994 Mar;14(3 Pt 1):1030-7
pubmed: 8120611
Glia. 2013 Sep;61(9):1488-99
pubmed: 23832770
J Neurosci. 2008 Mar 5;28(10):2394-408
pubmed: 18322086
J Biol Chem. 1993 Jul 25;268(21):15394-8
pubmed: 7687996
Neuroscience. 2016 Aug 25;330:205-18
pubmed: 27241943
Glia. 2008 Apr;56(5):481-93
pubmed: 18240313
J Neurosci. 2008 Jul 9;28(28):7231-43
pubmed: 18614693
Nat Commun. 2014 Jul 11;5:4294
pubmed: 25014177
J Mol Biol. 2011 Mar 18;407(1):35-44
pubmed: 21255584
J Biol Chem. 1991 Oct 5;266(28):18877-83
pubmed: 1918004
Glia. 2006 May;53(7):677-87
pubmed: 16482522
Lab Anim (NY). 2007 Jun;36(6):15-6
pubmed: 17519939