Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations.
Adult
Blood Flow Velocity
Blood Pressure
Blood Volume
Cerebrovascular Circulation
/ physiology
Female
Hemodynamics
Homeostasis
Humans
Hypercapnia
/ blood
Hypocapnia
/ blood
Male
Oxyhemoglobins
/ analysis
Rest
/ physiology
Spectroscopy, Near-Infrared
/ methods
Ultrasonography, Doppler, Transcranial
/ methods
Dynamic cerebral autoregulation
group delay
microvascular transit time
near infrared spectroscopy
transcranial Doppler
Journal
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
ISSN: 1559-7016
Titre abrégé: J Cereb Blood Flow Metab
Pays: United States
ID NLM: 8112566
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
pubmed:
26
10
2018
medline:
21
8
2020
entrez:
25
10
2018
Statut:
ppublish
Résumé
We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations.
Identifiants
pubmed: 30353763
doi: 10.1177/0271678X18806107
pmc: PMC6927073
doi:
Substances chimiques
Oxyhemoglobins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
135-149Références
J Cereb Blood Flow Metab. 2015 Jun;35(6):959-66
pubmed: 25669906
Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41
pubmed: 9458872
J Neurol Sci. 2006 Dec 1;250(1-2):103-9
pubmed: 17011584
Physiol Meas. 1999 Aug;20(3):265-75
pubmed: 10475580
Neuroimage. 2014 Jan 15;85 Pt 1:202-21
pubmed: 23583744
J Biomed Opt. 2016 Oct;21(10):101410
pubmed: 27020418
J Cereb Blood Flow Metab. 2018 Feb;38(2):230-240
pubmed: 29231781
J Biomed Opt. 2014 Feb;19(2):026005
pubmed: 24522805
J Clin Neurophysiol. 1999 Nov;16(6):501-11
pubmed: 10600018
Front Physiol. 2016 May 09;7:162
pubmed: 27242536
Neuroimage. 2002 Jul;16(3 Pt 1):704-12
pubmed: 12169254
J Appl Physiol (1985). 2010 Mar;108(3):604-13
pubmed: 20035062
Hum Brain Mapp. 2009 May;30(5):1548-67
pubmed: 18649348
J Biomed Opt. 2010 Jul-Aug;15(4):040512
pubmed: 20799778
Clin Auton Res. 2009 Aug;19(4):197-211
pubmed: 19370374
Clin Neurophysiol. 2000 Feb;111(2):326-37
pubmed: 10680569
Physiol Meas. 2003 Feb;24(1):27-43
pubmed: 12636185
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2859-62
pubmed: 19964277
J Appl Physiol (1985). 2010 Dec;109(6):1860-8
pubmed: 20884837
Brain Res. 2008 Sep 16;1230:115-24
pubmed: 18680730
J Cereb Blood Flow Metab. 2012 Feb;32(2):264-77
pubmed: 22044867
J Cereb Blood Flow Metab. 2005 Jul;25(7):852-7
pubmed: 15716851
J Appl Physiol (1985). 2009 Jan;106(1):153-60
pubmed: 18974368
Adv Exp Med Biol. 2004;551:259-65
pubmed: 15602973
J Biomed Opt. 2016 Oct;21(10):101408
pubmed: 26926870
Brain. 2003 Feb;126(Pt 2):326-42
pubmed: 12538401
Neuroimage. 2000 Dec;12(6):623-39
pubmed: 11112395
F1000Res. 2017 Aug 31;6:1615
pubmed: 29026526
Am J Physiol. 1999 Sep;277(3):H1089-99
pubmed: 10484432
J Cereb Blood Flow Metab. 2015 May;35(5):806-17
pubmed: 25669911
J Cereb Blood Flow Metab. 2018 Feb;38(2):290-303
pubmed: 28181842
Med Eng Phys. 2014 May;36(5):585-91
pubmed: 24176834
J Cereb Blood Flow Metab. 2016 Apr;36(4):665-80
pubmed: 26782760
Prog Biophys Mol Biol. 1995;64(2-3):237-78
pubmed: 8987386
Stroke. 1995 May;26(5):834-7
pubmed: 7740576
Eur J Clin Invest. 2012 Nov;42(11):1180-8
pubmed: 22897146
Fluids Barriers CNS. 2011 Jan 18;8(1):5
pubmed: 21349153
Stroke. 2007 Oct;38(10):2818-25
pubmed: 17761921