Genetic characterization of a flap1 null mutation in Arabidopsis npq4 and pgr5 plants suggests that the regulatory role of FLAP1 involves the control of proton homeostasis in chloroplasts.
FLAP1
Fluctuating light
Luminal acidification
Non-photochemical quenching
PGR5
Photosynthesis
Journal
Photosynthesis research
ISSN: 1573-5079
Titre abrégé: Photosynth Res
Pays: Netherlands
ID NLM: 100954728
Informations de publication
Date de publication:
Mar 2019
Mar 2019
Historique:
received:
07
03
2018
accepted:
24
08
2018
pubmed:
6
11
2018
medline:
5
3
2019
entrez:
4
11
2018
Statut:
ppublish
Résumé
Precise control of the proton concentration gradient across thylakoid membranes (ΔpH) is essential for photosynthesis and its regulation because the gradient contributes to the generation of the proton motive force used for ATP synthesis and also for the fast and reversible induction of non-photochemical quenching (NPQ) to avoid photoinhibition and photodamage. However, the regulatory mechanism(s) controlling ΔpH in response to fluctuating light has not been fully elucidated. We previously described a new NPQ-regulatory chloroplastic protein, Fluctuating-Light-Acclimation Protein1 (FLAP1), which is important for plant growth and modulation of ΔpH under fluctuating light conditions. For this report, we further characterized FLAP1 activity by individually crossing an Arabidopsis flap1 mutant with npq4 and pgr5 plants; npq4 is defective in PsbS-dependent NPQ, and pgr5 is defective in induction of steady-state proton motive force (pmf) and energy-dependent quenching (qE). Both npq4 and npq4 flap1 exhibited similar NPQ kinetics and other photosynthetic parameters under constant or fluctuating actinic light. Conversely, pgr5 flap1 had recovered NPQ, photosystem II quantum yield and growth under fluctuating light, each of which was impaired in pgr5. Together with other data, we propose that FLAP1 activity controls proton homeostasis under steady-state photosynthesis to manipulate luminal acidification levels appropriately to balance photoprotection and photochemical processes.
Identifiants
pubmed: 30390180
doi: 10.1007/s11120-018-0575-z
pii: 10.1007/s11120-018-0575-z
doi:
Substances chimiques
Arabidopsis Proteins
0
Protons
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
413-424Références
Nature. 2000 Jan 27;403(6768):391-5
pubmed: 10667783
Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1419-31
pubmed: 11127996
Biochim Biophys Acta. 1975 Jan 31;376(1):116-25
pubmed: 1125216
Plant Physiol. 2001 Apr;125(4):1558-66
pubmed: 11299337
Science. 2002 Jul 5;297(5578):91-3
pubmed: 12098696
Cell. 2002 Aug 9;110(3):361-71
pubmed: 12176323
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15222-7
pubmed: 12417767
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359
pubmed: 15012213
Nature. 2004 Jun 3;429(6991):579-82
pubmed: 15175756
J Exp Bot. 2005 Jan;56(411):337-46
pubmed: 15310815
Plant Cell. 2005 Apr;17(4):1217-32
pubmed: 15749754
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9709-13
pubmed: 15972806
EMBO Rep. 2005 Jul;6(7):629-34
pubmed: 15995679
Plant Physiol. 1949 Jan;24(1):1-15
pubmed: 16654194
Annu Rev Plant Biol. 2007;58:199-217
pubmed: 17201689
Annu Rev Plant Biol. 2007;58:459-81
pubmed: 17288534
Plant Physiol. 2007 Apr;143(4):1861-70
pubmed: 17416642
Photosynth Res. 2008 Oct-Dec;98(1-3):551-64
pubmed: 18780159
Plant Cell Physiol. 2009 Feb;50(2):383-93
pubmed: 19122188
Annu Rev Plant Biol. 2009;60:239-60
pubmed: 19575582
Biochim Biophys Acta. 2010 Apr;1797(4):466-75
pubmed: 20067757
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12955-60
pubmed: 21768351
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13317-22
pubmed: 21784980
Photosynth Res. 2012 Sep;113(1-3):75-88
pubmed: 22790560
Plant Cell. 2012 Jul;24(7):2934-48
pubmed: 22822205
Biochim Biophys Acta. 2012 Dec;1817(12):2158-65
pubmed: 23000078
Plant Physiol. 2012 Dec;160(4):1896-910
pubmed: 23033142
Plant Signal Behav. 2013 Jan;8(1):e22741
pubmed: 23221748
J Exp Bot. 2013 Oct;64(13):3983-98
pubmed: 23913954
Science. 2013 Oct 4;342(6154):114-8
pubmed: 24009357
Photosynth Res. 1990 Sep;25(3):173-85
pubmed: 24420348
Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130221
pubmed: 24591708
Curr Protein Pept Sci. 2014;15(4):351-62
pubmed: 24678670
Curr Opin Biotechnol. 2014 Apr;26:25-30
pubmed: 24679254
Front Plant Sci. 2015 Jul 08;6:521
pubmed: 26217370
Biochim Biophys Acta. 2016 Jul;1857(7):1015-22
pubmed: 26519774
Mol Plant. 2016 Mar 7;9(3):356-370
pubmed: 26597501
Mol Plant. 2016 Feb 1;9(2):271-288
pubmed: 26687812
Plant Physiol. 2016 Apr;170(4):1903-16
pubmed: 26864015
Front Plant Sci. 2016 Feb 29;7:218
pubmed: 26973667
Plant Signal Behav. 2016;11(4):e1165382
pubmed: 27018523
J Plant Res. 2016 May;129(3):379-95
pubmed: 27023791
Nat Plants. 2016 Mar 21;2:16035
pubmed: 27249566
Plant Cell Physiol. 2016 Jul;57(7):1557-1567
pubmed: 27335350
Plant Cell Physiol. 2016 Jul;57(7):1405-1414
pubmed: 27354420
Mol Plant. 2017 Jan 9;10(1):20-29
pubmed: 27575692
Arabidopsis Book. 2016 Sep 9;14:e0185
pubmed: 27695390
Plant J. 2017 Feb;89(3):540-553
pubmed: 27783435
J Theor Biol. 2017 Jan 21;413:11-23
pubmed: 27816676
Front Plant Sci. 2016 Nov 09;7:1690
pubmed: 27881991
Plant J. 2017 Jul;91(2):306-324
pubmed: 28380278
Plant Methods. 2017 Apr 14;13:26
pubmed: 28416964
Front Plant Sci. 2017 May 03;8:719
pubmed: 28515738
Planta. 2017 Nov;246(5):1045-1050
pubmed: 28828567
Plant Cell Physiol. 2017 Oct 1;58(10):1622-1630
pubmed: 29016945
Front Plant Sci. 2018 Feb 26;9:239
pubmed: 29535751
Physiol Plant. 2018 Nov;164(3):337-348
pubmed: 29604096
Biol Rev Camb Philos Soc. 1966 Aug;41(3):445-502
pubmed: 5329743