Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.


Journal

The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262

Informations de publication

Date de publication:
01 2019
Historique:
received: 21 09 2018
accepted: 06 11 2018
pubmed: 9 11 2018
medline: 27 5 2020
entrez: 9 11 2018
Statut: ppublish

Résumé

Electrophysiological characterization of Q1412X-CFTR, a C-terminal truncation mutation of cystic fibrosis transmembrane conductance regulator (CFTR) associated with the severe form of cystic fibrosis (CF), reveals a gating defect that has not been reported previously. Mechanistic investigations of the gating deficit in Q1412X-CFTR suggest that the reduced open probability in Q1412X-CFTR is the result of a disruption of the function of the second ATP binding site (or site 2) in the nucleotide binding domains (NBDs). Detailed comparisons of several mutations with different degrees of truncation in the C-terminal region of NBD2 reveal the importance of the last two beta-strands in NBD2 for maintaining proper gating functions. The results of the present study also show that the application of clinically-approved drugs (VX-770 and VX-809) can greatly enhance the function of Q1412X, providing in vitro evidence for a therapeutic strategy employing both reagents for patients bearing Q1412X or similar truncation mutations. Cystic fibrosis (CF) is caused by loss-of-function mutations of cystic fibrosis transmembrane conductance regulator (CFTR), a phosphorylation-activated but ATP-gated chloride channel. Based on the molecular mechanism of CF pathogenesis, disease-associated mutations are categorized into six classes. Among them, Class VI, whose members include some of the C-terminal truncation mutations such as Q1412X, is defined as decreased membrane expression because of a faster turnover rate. In the present study, we characterized the functional properties of Q1412X-CFTR, a severe-form premature stop codon mutation. We confirmed previous findings of a ∼90% decrease in membrane expression but found a ∼95% reduction in the open probability (P

Identifiants

pubmed: 30408177
doi: 10.1113/JP277042
pmc: PMC6332826
doi:

Substances chimiques

Aminophenols 0
Aminopyridines 0
Benzodioxoles 0
Chloride Channel Agonists 0
Quinolones 0
Cystic Fibrosis Transmembrane Conductance Regulator 126880-72-6
ivacaftor 1Y740ILL1Z
lumacaftor EGP8L81APK

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

543-560

Subventions

Organisme : NIDDK NIH HHS
ID : R01 DK055835
Pays : United States
Organisme : HHS | National Institutes of Health (NIH)
ID : NIHR01DK55835
Pays : International

Informations de copyright

© 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

Références

N Engl J Med. 2015 Jul 16;373(3):220-31
pubmed: 25981758
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
J Biol Chem. 2001 Jan 12;276(2):1291-8
pubmed: 11022033
Am J Physiol. 1997 Oct;273(4):C1278-89
pubmed: 9357772
Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4404-9
pubmed: 23440202
Biochem J. 2002 Sep 1;366(Pt 2):541-8
pubmed: 12020354
J Clin Invest. 2007 Mar;117(3):683-92
pubmed: 17290305
Cell. 1995 Jul 28;82(2):231-9
pubmed: 7543023
Cell. 2017 Mar 23;169(1):85-95.e8
pubmed: 28340353
Science. 1989 Sep 8;245(4922):1066-73
pubmed: 2475911
Cell. 2017 Jul 27;170(3):483-491.e8
pubmed: 28735752
Cell. 2000 Sep 29;103(1):169-79
pubmed: 11051556
J Gen Physiol. 2018 Apr 2;150(4):539-570
pubmed: 29581173
Biochemistry. 2010 Aug 3;49(30):6352-7
pubmed: 20590134
J Physiol. 2016 Jun 15;594(12):3227-44
pubmed: 26846474
Cell Mol Life Sci. 2017 Jan;74(1):67-83
pubmed: 27699452
Biochem J. 2013 Jan 1;449(1):295-305
pubmed: 23067305
J Cyst Fibros. 2017 May;16(3):371-379
pubmed: 28209466
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18825-30
pubmed: 19846789
J Physiol. 2011 Jun 1;589(Pt 11):2719-31
pubmed: 21486785
J Gen Physiol. 2005 Apr;125(4):377-94
pubmed: 15767296
J Biol Chem. 2012 Oct 26;287(44):36639-49
pubmed: 22942289
J Gen Physiol. 2015 Jan;145(1):47-60
pubmed: 25512598
J Gen Physiol. 2012 Oct;140(4):347-59
pubmed: 22966014
J Gen Physiol. 2006 Oct;128(4):413-22
pubmed: 16966475
J Gen Physiol. 2003 Jan;121(1):17-36
pubmed: 12508051
Int J Biochem Cell Biol. 2014 Jul;52:47-57
pubmed: 24727426
N Engl J Med. 2017 Nov 23;377(21):2013-2023
pubmed: 29099344
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1937-42
pubmed: 12578973
J Cell Biol. 2001 May 28;153(5):957-70
pubmed: 11381082
Hum Mol Genet. 2017 Aug 15;26(16):3116-3129
pubmed: 28575328
J Gen Physiol. 2009 Apr;133(4):405-19
pubmed: 19332621
Cell. 2016 Dec 1;167(6):1586-1597.e9
pubmed: 27912062
J Biol Chem. 1999 Jul 30;274(31):21873-7
pubmed: 10419506
J Gen Physiol. 2014 Oct;144(4):311-20
pubmed: 25225552
J Clin Invest. 1999 Nov;104(10):1353-61
pubmed: 10562297
J Physiol. 2009 May 15;587(Pt 10):2151-61
pubmed: 19332488
Nature. 1993 Mar 11;362(6416):160-4
pubmed: 7680769
J Biol Chem. 2011 Dec 9;286(49):41937-48
pubmed: 21965669
Receptors Channels. 1993;1(3):221-32
pubmed: 7522901
N Engl J Med. 2005 May 12;352(19):1992-2001
pubmed: 15888700
Lancet. 2009 May 30;373(9678):1891-904
pubmed: 19403164
J Gen Physiol. 2010 Sep;136(3):293-309
pubmed: 20805575
J Gen Physiol. 2017 Mar 6;149(3):355-372
pubmed: 28242630
J Biol Chem. 2001 Mar 23;276(12):8942-50
pubmed: 11124952
J Biol Chem. 1993 Oct 15;268(29):21592-8
pubmed: 7691813
Hum Mol Genet. 1998 Apr;7(4):729-35
pubmed: 9499426
J Biol Chem. 2017 Mar 3;292(9):3706-3719
pubmed: 28087700
Sci Transl Med. 2014 Jul 23;6(246):246ra97
pubmed: 25101887
Cold Spring Harb Perspect Med. 2013 Jan 01;3(1):a009498
pubmed: 23284076
Lancet Respir Med. 2016 Aug;4(8):662-674
pubmed: 27053340
Nature. 1991 Dec 19-26;354(6354):526-8
pubmed: 1722027
J Biol Chem. 2001 Mar 16;276(11):7689-92
pubmed: 11244086
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18843-8
pubmed: 21976485
J Gen Physiol. 2007 Apr;129(4):285-98
pubmed: 17353351
FASEB J. 1990 Jul;4(10):2709-17
pubmed: 2197151
J Biol Chem. 2012 Nov 23;287(48):40547-59
pubmed: 23045527
J Physiol. 2001 Apr 15;532(Pt 2):435-48
pubmed: 11306662
Nature. 2006 Mar 23;440(7083):477-83
pubmed: 16554808
Biophys J. 2000 Feb;78(2):785-99
pubmed: 10653791
F1000Prime Rep. 2015 Feb 03;7:14
pubmed: 25750732
PLoS One. 2017 Apr 18;12(4):e0175486
pubmed: 28419121
Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2461-6
pubmed: 25675504
Physiology (Bethesda). 2012 Dec;27(6):351-61
pubmed: 23223629
PLoS One. 2014 Feb 10;9(2):e88564
pubmed: 24520399

Auteurs

Jiunn-Tyng Yeh (JT)

Interdisciplinary Neuroscience Program.
Dalton Cardiovascular Research Center.

Ying-Chun Yu (YC)

Dalton Cardiovascular Research Center.
Department of Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, MO, USA.

Tzyh-Chang Hwang (TC)

Interdisciplinary Neuroscience Program.
Dalton Cardiovascular Research Center.
Department of Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, MO, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH