A gyroscopic advantage: phylogenetic patterns of compensatory movements in frogs.
Anura
Compensatory movement
Ecomorphology
Locomotion
Journal
The Journal of experimental biology
ISSN: 1477-9145
Titre abrégé: J Exp Biol
Pays: England
ID NLM: 0243705
Informations de publication
Date de publication:
18 01 2019
18 01 2019
Historique:
received:
09
07
2018
accepted:
14
11
2018
pubmed:
18
11
2018
medline:
26
3
2020
entrez:
18
11
2018
Statut:
epublish
Résumé
Head and eye compensatory movements known as vestibulo-ocular and vestibulo-cervical reflexes are essential to stay orientated in space while moving. We have used a previously developed methodology focused on the detailed mathematical description of head compensatory movements in frogs without the need for any surgical procedures on the examined specimens. Our comparative study comprising 35 species of frogs from different phylogenetic backgrounds revealed species-specific head compensatory abilities ensuring gaze stabilization. Moreover, we found a strong phylogenetic signal highlighting the great ability of compensatory head movements in families of Pyxicephalidae and Rhacophoridae from the Natatanura group. By contrast, families of Dendrobatidae and Microhylidae exhibited only poor or no head compensatory movements. Contrary to our expectation, the results did not corroborate an ecomorphological hypothesis anticipating a close relationship between ecological parameters and the head compensatory movements. We did not find any positive association between more complex (3D structured, arboreal or aquatic) habitats or more saltatory behavior and elevated abilities of head compensatory movements. Moreover, we found compensatory movements in most basal Archeobatrachia, giving an indication of common ancestry of these abilities in frogs that are variously pronounced in particular families. We hypothesize that the uncovered proper gaze stabilization during locomotion provided by the higher head compensatory abilities can improve or even enable visual perception of the prey. We interpret this completely novel finding as a possible gyroscopic advantage in a foraging context. We discuss putative consequences of such advanced neuromotor skills for diversification and ecological success of the Natatanura group.
Identifiants
pubmed: 30446541
pii: jeb.186544
doi: 10.1242/jeb.186544
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2019. Published by The Company of Biologists Ltd.
Déclaration de conflit d'intérêts
Competing interestsThe authors declare no competing or financial interests.