Characterization of 3-dimensional papillary muscle displacement in in vivo ovine models of ischemic/functional mitral regurgitation.
Anatomic Landmarks
Animals
Disease Models, Animal
Fiducial Markers
Fluoroscopy
Imaging, Three-Dimensional
/ instrumentation
Mitral Valve
/ diagnostic imaging
Mitral Valve Insufficiency
/ diagnostic imaging
Myocardial Infarction
/ complications
Papillary Muscles
/ diagnostic imaging
Predictive Value of Tests
Sheep, Domestic
cardiac intervention
cardiomyopathy
heart failure
mitral regurgitation
mitral valve
mitral valve repair
pathophysiology
surgery techniques
Journal
The Journal of thoracic and cardiovascular surgery
ISSN: 1097-685X
Titre abrégé: J Thorac Cardiovasc Surg
Pays: United States
ID NLM: 0376343
Informations de publication
Date de publication:
04 2019
04 2019
Historique:
received:
12
04
2018
revised:
11
09
2018
accepted:
18
09
2018
pubmed:
19
11
2018
medline:
25
2
2020
entrez:
19
11
2018
Statut:
ppublish
Résumé
Papillary muscle (PM) displacement contributes to ischemic/functional mitral regurgitation (IMR/FMR). The displaced PMs pull the mitral leaflets into the left ventricle (ie, toward the apex) thus hampering leaflet coaptation. Intuitively apical leaflet tethering results from apical PM displacement. The 3-dimensional directions of PM displacement are, however, incompletely characterized. Data from in vivo ovine models of IMR (6-8 weeks of posterolateral infarction, n = 12) and FMR (9-21 days of rapid left ventricular pacing, n = 11) were analyzed. All sheep had radiopaque markers implanted on the anterior and posterior PM (PPM) tips, around the mitral annulus, and on the left ventricular apex. To explore 3-dimensional PM displacement directions, differences in marker coordinates were calculated at end-systole before and during IMR/FMR using a right-handed coordinate system centered on the mitral annular "saddle horn" with the y-axis passing through the apical marker. No apical PM displacement was observed during either IMR or FMR. The anterior PM displaced laterally during FMR. Posterolateral PPM displacement was observed during IMR and FMR. Experimental in vivo ovine models suggest posterolateral PPM displacement as a predominant pathomechanism leading to apical leaflet tethering during IMR/FMR.
Identifiants
pubmed: 30447965
pii: S0022-5223(18)32577-7
doi: 10.1016/j.jtcvs.2018.09.069
pmc: PMC6431277
mid: NIHMS1512831
pii:
doi:
Types de publication
Journal Article
Video-Audio Media
Langues
eng
Sous-ensembles de citation
IM
Pagination
1444-1449Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL029589
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL067025
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Références
Ann Thorac Surg. 2006 Jan;81(1):42-6
pubmed: 16368332
Nat Rev Cardiol. 2015 Dec;12(12):689-710
pubmed: 26483167
Circulation. 2009 Jul 28;120(4):334-42
pubmed: 19597052
J Am Soc Echocardiogr. 2008 Apr;21(4):347-54
pubmed: 17681731
J Thorac Cardiovasc Surg. 2000 Nov;120(5):966-75
pubmed: 11044323
Circulation. 2008 Sep 30;118(14 Suppl):S263-9
pubmed: 18824765
J Thorac Cardiovasc Surg. 2011 May;141(5):1315-6
pubmed: 20880551
Thorac Cardiovasc Surg. 2016 Aug;64(5):447-9
pubmed: 25866974
J Thorac Cardiovasc Surg. 2003 Jan;125(1):135-43
pubmed: 12538997
J Thorac Cardiovasc Surg. 2005 Jun;129(6):1266-75
pubmed: 15942566
J Thorac Cardiovasc Surg. 2017 Feb;153(2):286-295.e2
pubmed: 27773578
Circulation. 2000 Sep 19;102(12):1400-6
pubmed: 10993859
Circulation. 2001 Sep 18;104(12 Suppl 1):I47-53
pubmed: 11568029
Circulation. 1997 Nov 4;96(9 Suppl):II-128-33
pubmed: 9386087
Circulation. 2003 Sep 9;108 Suppl 1:II116-21
pubmed: 12970219
Comput Biomed Res. 1991 Apr;24(2):129-42
pubmed: 2036779
J Am Coll Cardiol. 2016 May 24;67(20):2334-2346
pubmed: 27199056
N Engl J Med. 2016 Jan 28;374(4):344-53
pubmed: 26550689
Eur J Cardiothorac Surg. 2017 Jun 1;51(6):1023-1030
pubmed: 28040676
Am J Cardiol. 2013 Dec 1;112(11):1812-8
pubmed: 24035166
Eur J Echocardiogr. 2008 Mar;9(2):207-21
pubmed: 17600766
J Thorac Cardiovasc Surg. 2004 Oct;128(4):543-51
pubmed: 15457155
Circulation. 2007 Sep 11;116(11 Suppl):I259-63
pubmed: 17846314
Eur J Cardiothorac Surg. 2002 Nov;22(5):808-16
pubmed: 12414050
Ann Thorac Surg. 2003 Nov;76(5):1556-63
pubmed: 14602285
Ann Thorac Surg. 2002 Aug;74(2):600-1
pubmed: 12173864
N Engl J Med. 2016 May 19;374(20):1932-41
pubmed: 27040451
J Thorac Cardiovasc Surg. 2011 Feb;141(2):345-53
pubmed: 21241857
Br Heart J. 1978 Apr;40(4):351-66
pubmed: 565642
J Thorac Cardiovasc Surg. 2018 Aug;156(2):630-638.e1
pubmed: 29395191
Am J Physiol Heart Circ Physiol. 2005 Sep;289(3):H1218-25
pubmed: 15863458
Circulation. 2009 May 19;119(19):2606-14
pubmed: 19414639
J Thorac Cardiovasc Surg. 2003 Mar;125(3):559-69
pubmed: 12658198
Circulation. 2001 Oct 16;104(16):1952-7
pubmed: 11602500
Eur J Cardiothorac Surg. 2008 Nov;34(5):964-8
pubmed: 18774304
Circulation. 2009 Sep 15;120(11 Suppl):S92-8
pubmed: 19752392
J Thorac Dis. 2016 Jul;8(7):1410-3
pubmed: 27501403
J Card Surg. 2016 Jan;31(1):31-7
pubmed: 26626776
Circulation. 2005 Aug 30;112(9 Suppl):I383-9
pubmed: 16159851
J Thorac Cardiovasc Surg. 2015 Jul;150(1):232-7
pubmed: 25998465
Ann Thorac Surg. 2006 Jun;81(6):2324-5
pubmed: 16731191
J Thorac Cardiovasc Surg. 2018 May;155(5):2002-2010
pubmed: 29397976
Eur J Cardiothorac Surg. 2016 Jul;50(1):17-28
pubmed: 27009102
J Am Coll Cardiol. 2016 May 24;67(20):2347-2348
pubmed: 27199057
J Am Coll Cardiol. 2005 Jul 5;46(1):113-9
pubmed: 15992644