Alteration of T Cell Phenotypes in HIV-Neurotuberculosis Coinfection.
Adult
Aged
CD4-Positive T-Lymphocytes
/ microbiology
CD8-Positive T-Lymphocytes
/ microbiology
Female
Flow Cytometry
HIV Infections
/ diagnosis
Humans
India
/ epidemiology
Leukocytes, Mononuclear
/ microbiology
Lymphocyte Activation
/ immunology
Male
Middle Aged
Mycobacterium tuberculosis
/ pathogenicity
Phenotype
T-Lymphocyte Subsets
/ immunology
Young Adult
HIV
T cell activation
memory T cell
naïve T cell
tuberculosis
Journal
Cytometry. Part B, Clinical cytometry
ISSN: 1552-4957
Titre abrégé: Cytometry B Clin Cytom
Pays: United States
ID NLM: 101235690
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
31
01
2018
revised:
19
09
2018
accepted:
16
10
2018
pubmed:
20
11
2018
medline:
10
6
2021
entrez:
20
11
2018
Statut:
ppublish
Résumé
Neurotuberculosis is one of the commonest HIV associated opportunistic infections of the central nervous system in India. HIV-TB coinfection may lead to altered frequencies of T cells, thereby influencing the course and progression of the disease. We examined the frequencies of T cell subsets in HIV infected individuals with neurotuberculosis (HIV+nTB+) as compared to individuals with HIV associated systemic TB (HIV+sTB+), asymptomatic HIV (HIV+TB-), non-HIV neuro TB (HIV-nTB+), non-HIV systemic TB (HIV-sTB+), and healthy controls (HIV-TB-). Activation and senescence profiles of CD4 and CD8 T cells and memory subsets in peripheral blood mononuclear cells were studied by flow cytometry. The significant observations among the T cell subsets in HIV+nTB+ were: (1) Naïve T cells: decreased CD4 T cells compared to HIV-sTB+ (P = 0.005); decreased CD8 T cells compared to HIV-nTB+ and HIV-TB- (P ≤ 0.007), (2) Memory T cells: expanded CD4 TEMRA cells compared to HIV-nTB+, HIV-sTB+, and HIV-TB- (P ≤ 0.003); expanded CD8 TEMRA cells compared to HIV-nTB+ and HIV-TB- (P ≤ 0.005), (3) Activated T cells: higher CD4 T cells compared to HIV-nTB+, HIV-sTB+, and HIV-TB- (P ≤ 0.004); higher CD8 T cells compared to HIV + TB-, HIV-nTB+, HIV-sTB+, and HIV-TB- (P ≤ 0.001), and (4) Senescent T cells: increased CD8 T cells compared to HIV-nTB+ and HIV-TB- groups (P = 0.000). Increased activation compared to HIV+TB-, HIV-nTB+, HIV-sTB+, and HIV-TB- groups and increased senescence compared to HIV-nTB+ and HIV-TB- groups were observed in CD8 T cells in HIV+nTB+, suggesting that the frequencies of these T cell subsets are altered to a greater extent in these individuals. © 2018 International Clinical Cytometry Society.
Sections du résumé
BACKGROUND
Neurotuberculosis is one of the commonest HIV associated opportunistic infections of the central nervous system in India. HIV-TB coinfection may lead to altered frequencies of T cells, thereby influencing the course and progression of the disease.
METHODS
We examined the frequencies of T cell subsets in HIV infected individuals with neurotuberculosis (HIV+nTB+) as compared to individuals with HIV associated systemic TB (HIV+sTB+), asymptomatic HIV (HIV+TB-), non-HIV neuro TB (HIV-nTB+), non-HIV systemic TB (HIV-sTB+), and healthy controls (HIV-TB-). Activation and senescence profiles of CD4 and CD8 T cells and memory subsets in peripheral blood mononuclear cells were studied by flow cytometry.
RESULTS
The significant observations among the T cell subsets in HIV+nTB+ were: (1) Naïve T cells: decreased CD4 T cells compared to HIV-sTB+ (P = 0.005); decreased CD8 T cells compared to HIV-nTB+ and HIV-TB- (P ≤ 0.007), (2) Memory T cells: expanded CD4 TEMRA cells compared to HIV-nTB+, HIV-sTB+, and HIV-TB- (P ≤ 0.003); expanded CD8 TEMRA cells compared to HIV-nTB+ and HIV-TB- (P ≤ 0.005), (3) Activated T cells: higher CD4 T cells compared to HIV-nTB+, HIV-sTB+, and HIV-TB- (P ≤ 0.004); higher CD8 T cells compared to HIV + TB-, HIV-nTB+, HIV-sTB+, and HIV-TB- (P ≤ 0.001), and (4) Senescent T cells: increased CD8 T cells compared to HIV-nTB+ and HIV-TB- groups (P = 0.000).
CONCLUSIONS
Increased activation compared to HIV+TB-, HIV-nTB+, HIV-sTB+, and HIV-TB- groups and increased senescence compared to HIV-nTB+ and HIV-TB- groups were observed in CD8 T cells in HIV+nTB+, suggesting that the frequencies of these T cell subsets are altered to a greater extent in these individuals. © 2018 International Clinical Cytometry Society.
Identifiants
pubmed: 30450685
doi: 10.1002/cyto.b.21746
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
270-281Informations de copyright
© 2018 International Clinical Cytometry Society.
Références
Diedrich CR, Flynn JL. HIV-1/mycobacterium tuberculosis coinfection immunology: How does HIV-1 exacerbate tuberculosis. Infect Immun. 2011;79(4):1407-1417.
Kwan C, Ernst JD. HIV and tuberculosis: A deadly human syndemic. Clin Microbiol Rev. 2011;24(2):351-376.
WHO. Global TB Rep. 2016;146. Available from: http://www.who.int/tb/publications/global_report/gtbr2016_annex2.pdf.
Yang Z, Kong Y, Wilson F, Foxman B, Fowler AH, Marrs CF, Cave MD, Bates JH. Identification of risk factors for extrapulmonary tuberculosis. Clin Infect Dis. 2004;38(2):199-205.
de Noronha ALL, Báfica A, Nogueira L, Barral A, Barral-Netto M. Lung granulomas from mycobacterium tuberculosis/HIV-1 coinfected patients display decreased in situ TNF production. Pathol Res Pract. 2008;204(3):155-161.
Berenguer J, Moreno S, Laguna F, Vicente T, Adrados M, Ortega A, González-LaHoz J, Bouza E. Tuberculous meningitis in patients infected with the human immunodeficiency virus. N Engl J Med. 1992;326(10):668-672.
Galimi R. Extrapulmonary tuberculosis: Tuberculous meningitis new developments. Eur Rev Med Pharmacol Sci. 2011;15(4):365-386.
Iacob AS, Iacob GD. Neurotuberculosis and HIV infection. Tuberc - Curr Issues Diagnosis Manag. 2013;285-320. Available from: https://www.intechopen.com/books/tuberculosis-current-issues-in-diagnosis-and-management/neurotuberculosis-and-hiv-infection.
Chamie G, Marquez C, Luetkemeyer A. HIV-associated central nervous system tuberculosis. Semin Neurol. 2014;34(1):103-115.
Satishchandra P, Nalini A, Gourie-Devi M, et al. Profile of neurologic disorders associated with HIV/AIDS from Bangalore, South India (1989-96). Indian J Med Res. 2000;111:14-23.
Shankar SK, Mahadevan A, Satishchandra P, et al. Neuropathology of HIV/AIDS with an overview of the Indian scene. Indian J Med Res. 2005;121(4):468-488.
Mojumdar K, Vajpayee M, Chauhan NK, Singh A, Singh R, Kurapati S. Altered T cell differentiation associated with loss of CD27 and CD28 in HIV infected Indian individuals. Cytom Part B - Clin Cytom. 2012;82(1):43-53.
McCloskey TW, Kohn N, Lesser M, Bakshi S, Pahwa S. Immunophenotypic analysis of HIV-infected children: Alterations within the first year of life, changes with disease progression, and longitudinal analyses of lymphocyte subsets. Commun Clin Cytom. 2001;46(3):157-165.
Pira G, Kern F, Gratama J, Roederer M, Manca F. Measurement of antigen specific immune responses: 2006 update. Cytom Part B - Clin Cytom. 2007;85(December 2006):77-85.
Ono E, Dos Santos AMN, Machado DM, et al. Immunologic features of HIV-1-infected women on HAART at delivery. Cytom Part B - Clin Cytom. 2008;74(4):236-243.
Onlamoon N, Sukapirom K, Polsrila K, Ammaranond P, Pattanapanyasat K. Alteration of CD8 + T cell effector diversity during HIV-1 infection with discordant normalization in effective antiretroviral therapy. Cytom Part B - Clin Cytom. 2012;82 B(1):35-42.
Tuaillon E, Al TY, Baillat V, et al. Close association of CD8+/CD38 bright with HIV-1 replication and complex relationship with CD4+ T-cell count. Cytom Part B - Clin Cytom. 2009;76(4):249-260.
Rodrigues DSS, Medeiros E a S, Weckx LY, Bonnez W, Salomão R, Kallas EG. Immunophenotypic characterization of peripheral T lymphocytes in mycobacterium tuberculosis infection and disease. Clin Exp Immunol. 2002;128(1):149-154.
Hertoghe T, Wajja A, Ntambi L, Okwera A, Aziz MA, Hirsch C, Johnson J, Toossi Z, Mugerwa R, Mugyenyi P, et al. T cell activation, apoptosis and cytokine dysregulation in the (co)pathogenesis of HIV and pulmonary tuberculosis (TB). Clin Exp Immunol. 2000;122(3):350-357.
Chiacchio T, Petruccioli E, Vanini V, Cuzzi G, Pinnetti C, Sampaolesi A, Antinori A, Girardi E, Goletti D. Polyfunctional T-cells and effector memory phenotype are associated with active TB in HIV-infected patients. J Infect. 2014;69(6):533-545.
Matthews K, Ntsekhe M, Syed F, Scriba T, Russell J, Tibazarwa K, Deffur A, Hanekom W, Mayosi BM, Wilkinson RJ, et al. HIV-1 infection alters CD4+ memory T-cell phenotype at the site of disease in extrapulmonary tuberculosis. Eur J Immunol. 2012;42(1):147-157.
Aaron L, Saadoun D, Calatroni I, Launay O, Mémain N, Vincent V, Marchal G, Dupont B, Bouchaud O, Valeyre D, et al. Tuberculosis in HIV-infected patients: A comprehensive review. Clin Microbiol Infect. 2004;10(5):388-398.
Geldmacher C, Schuetz A, Ngwenyama N, Casazza JP, Sanga E, Saathoff E, Boehme C, Geis S, Maboko L, Singh M, et al. Early depletion of Mycobacterium tuberculosis -specific T helper 1 cell responses after HIV-1 infection. J Infect Dis. 2008;198(11):1590-1598.
Barnes PF, Bloch AB, Davidson PT, Snider DE. Tuberculosis in patients with human immunodeficiency virus infection. N Engl J Med. 1991;324(23):1644-1650.
Jones BE, Young SMM, Antoniskis D, Davidson PT, Kramer F, Barnes PF. Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am Rev Respir Dis. 1993;148(5):1292-1297.
Geldmacher C, Ngwenyama N, Schuetz A, Petrovas C, Reither K, Heeregrave EJ, Casazza JP, Ambrozak DR, Louder M, Ampofo W, et al. Preferential infection and depletion of mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J Exp Med. 2010;207(13):2869-2881.
Rao D, Vasanthapuram R, Satishchandra P, Desai A. Pattern recognition receptor mRNA expression and cytokine and granzyme levels in HIV infected individuals with neurotuberculosis. J Neuroimmunol. 2018;318:21-28.
Rao D, Venkataswamy MM, Vasanthapuram R, Satishchandra P, Desai A. Alterations in natural killer and dendritic cell subsets in individuals with HIV-associated neurotuberculosis. J Med Virol. 2018;90(5):899-906.
Kamat A, Ravi V, Desai A, Satishchandra P, Satish KS, Borodowsky I, Subbakrishna DK, Kumar M. Quantitation of HIV-1 RNA levels in plasma and CSF of asymptomatic HIV-1 infected patients from South India using a TaqMan real time PCR assay. J Clin Virol. 2007;39(1):9-15.
Maecker HT, McCoy JP, Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat Rev Immunol. 2012;12(3):191-200.
Thakar MR, Abraham PR, Arora S, Balakrishnan P, Bandyopadhyay B, Joshi AA, Devi KR, Vasanthapuram R, Vajpayee M, Desai A, et al. Establishment of reference CD4+ T cell values for adult Indian population. AIDS Res Ther. 2011;8:35.
Wanchu A, Bhatnagar A, Talreja J, Sapra S, Suryanarayana BS, Suresh P. Immunophenotypic and intracellular cytokine profile of Indian patients with tuberculosis with and without human immunodeficiency virus coinfection. Indian J Chest Dis Allied Sci. 2009;51(4):207-211.
Lahey T, Matee M, Mtei L, Bakari M, Pallangyo K, von Reyn CF. Lymphocyte proliferation to mycobacterial antigens is detectable across a spectrum of HIV-associated tuberculosis. BMC Infect Dis. 2009;9:21.
Jurado JO, Pasquinelli V, Alvarez IB, et al. ICOS, SLAM and PD-1 expression and regulation on T lymphocytes reflect the immune dysregulation in patients with HIV-related illness with pulmonary tuberculosis. J Int AIDS Soc. 2012;15(2):17428.
Fredy FC, Liwang F, Kurniawan R, Nasir AU. The correlation between CD4+ T-lymphocyte count and tuberculosis form in TB-HIV coinfected patients in Indonesia. Acta Med Indones. 2012;44(2):122-127.
Andersen AB, Range NS, Changalucha J, PrayGod G, Kidola J, Faurholt-Jepsen D, Krarup H, Grewal HMS, Friis H. CD4 lymphocyte dynamics in Tanzanian pulmonary tuberculosis patients with and without HIV coinfection. BMC Infect Dis. 2012;12(1):66.
Mojumdar K, Vajpayee M, Chauhan NK, Singh A, Singh R, Kurapati S. Loss of CD127 & increased immunosenescence of T cell subsets in HIV infected individuals. Indian J Med Res. 2011;134(12):972-981.
Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: Implications for vaccine development. Nat Rev Immunol. 2002;2(4):251-262.
Appay V, Rowland-Jones SL. Premature ageing of the immune system: The cause of AIDS. Trends Immunol. 2002;23(12):580-585.
Ladell K, Hellerstein MK, Cesar D, Busch R, Boban D, McCune JM. Central memory CD8+ T cells appear to have a shorter lifespan and reduced abundance as a function of HIV disease progression. J Immunol. 2008;180(12):7907-7918.
Champagne P, Ogg GS, King a S, et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature. 2001;410(6824):106-111.
Petruccioli E, Petrone L, Vanini V, Sampaolesi A, Gualano G, Girardi E, Palmieri F, Goletti D. IFNγ/TNFα specific-cells and effector memory phenotype associate with active tuberculosis. J Infect. 2013;66(6):475-486.
Aandahl EM, Quigley MF, Moretto WJ, et al. Expansion of CD7(low) and CD7(negative) CD8 T-cell effector subsets in HIV-1 infection: Correlation with antigenic load and reversion by antiretroviral treatment. Blood. 2004;104(12):3672-3678.
Bandera A, Trabattoni D, Pacei M, Fasano F, Suardi E, Cesari M, Marchetti G, Pogliani EM, Franzetti F, Clerici M, et al. Fully immunocompetent CD8+ T lymphocytes are present in autologous haematopoietic stem cell transplantation recipients despite an ineffectual T-helper response. PLoS One. 2008;3(10):e3616.
Kaplan RC, Sinclair E, Landay AL, Lurain N, Sharrett AR, Gange SJ, Xue X, Hunt P, Karim R, Kern DM, et al. T cell activation and senescence predict subclinical carotid artery disease in HIV-infected women. J Infect Dis. 2011;203(4):452-463.
Srinivasula S, R a L, Adelsberger JW, et al. Differential effects of HIV viral load and CD4 count on proliferation of naive and memory CD4 and CD8 T lymphocytes. Blood. 2011;118(2):262-270.
Catalfamo M, Wilhelm C, Tcheung L, Proschan M, Friesen T, Park JH, Adelsberger J, Baseler M, Maldarelli F, Davey R, et al. CD4 and CD8 T cell immune activation during chronic HIV infection: Roles of homeostasis, HIV, type I IFN, and IL-7. J Immunol. 2011;186(4):2106-2116.
Catalfamo M, Mascio M, Di HZ, et al. HIV infection-associated immune activation occurs by two distinct pathways that differentially affect CD4 and CD8 T cells. Proc Natl Acad Sci U S A. 2008;105:19851-19856.
Agarwal A, Sankaran S, Vajpayee M, Sreenivas V, Seth P, Dandekar S. Correlation of immune activation with HIV-1 RNA levels assayed by real-time RT-PCR in HIV-1 subtype C infected patients in northern India. J Clin Virol. 2007;40(4):301-306.
Vajpayee M, Kaushik S, Sreenivas V, Mojumdar K, Mendiratta S, Chauhan NK. Role of immune activation in CD4+ T-cell depletion in HIV-1 infected Indian patients. Eur J Clin Microbiol Infect Dis. 2009;28(1):69-73.
Hazenberg MD, Otto S a, van BHB B, et al. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS. 2003;17(13):1881-1888.
Hernandez JC, Arteaga J, Paul S, Kumar A, Latz E, Urcuqui-Inchima S. Up-regulation of TLR2 and TLR4 in dendritic cells in response to HIV type 1 and coinfection with opportunistic pathogens. AIDS Res Hum Retroviruses. 2011;27(10):1099-1109.
Serrano-Villar S, Sainz T, Lee SA, Hunt PW, Sinclair E, Shacklett BL, Ferre AL, Hayes TL, Somsouk M, Hsue PY, et al. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathog. 2014;10(5):e1004078.
Jones BE, Oo MM, Taikwel EK, Qian D, Kumar A, Maslow ER, Barnes PF. CD4 cell counts in human immunodeficiency virus-negative patients with tuberculosis. Clin Infect Dis. 1997;24(5):988-991.
Kony S, Hane A, Larouzé B, et al. Tuberculosis-associated severe CD4+ T-Lymphocytopenia in HIV-Seronegative patients from Dakar. J Infect. 2000;41(2):167-171.
Barcelos W, Martins-Filho OA, Guimarães TMPD, Oliveira MHP, Spíndola-de-Miranda S, Carvalho BN, de Toledo VPCP. Peripheral blood mononuclear cells immunophenotyping in pulmonary tuberculosis patients before and after treatment. Microbiol Immunol. 2006;50(8):597-605.
Rao D, Byrareddy SN, Venkataswamy MM, Satishchandra P, Vasanthapuram R, Desai A. Pathogen-specific T-Cell responses in individuals with HIV associated tuberculosis of the central nervous system. 2018. Manuscript submitted for publication.