Downregulation of GATA6 in mTOR-inhibited human aortic endothelial cells: effects on TNF-α-induced VCAM-1 expression and monocytic cell adhesion.
Aorta
/ cytology
Atherosclerosis
/ metabolism
Cell Adhesion
Cells, Cultured
Down-Regulation
Endothelial Cells
/ drug effects
Endothelium, Vascular
/ cytology
GATA6 Transcription Factor
/ genetics
Humans
Monocytes
/ physiology
Protein Kinase C-alpha
/ metabolism
Signal Transduction
TOR Serine-Threonine Kinases
/ genetics
Tumor Necrosis Factor-alpha
/ pharmacology
Vascular Cell Adhesion Molecule-1
/ genetics
GATA6
atherosclerosis
endothelium
vascular cell adhesion molecule 1
Journal
American journal of physiology. Heart and circulatory physiology
ISSN: 1522-1539
Titre abrégé: Am J Physiol Heart Circ Physiol
Pays: United States
ID NLM: 100901228
Informations de publication
Date de publication:
01 02 2019
01 02 2019
Historique:
pubmed:
22
11
2018
medline:
28
12
2019
entrez:
22
11
2018
Statut:
ppublish
Résumé
Increased expression of vascular cell adhesion molecule 1 (VCAM-1) on the aortic endothelium is an early marker of atherogenesis, promoted in part by elevated levels of inflammatory cytokines such as TNF-α. Mammalian target of rapamycin (mTOR) is a ubiquitous signaling molecule that has been considered to contribute to diverse cellular processes through mTOR complex 1 (mTORC1) or complex 2 (mTORC2). This study aimed to elucidate the role of mTOR signaling in TNF-α-induced VCAM-1 expression by the arterial endothelium. Primary human aortic endothelial cells (HAECs) were treated with low-dose (0.1 ng/ml) TNF-α, and VCAM-1 expression was measured by real-time quantitative PCR, Western blot analysis, and flow cytometry. Inhibition of mTOR through siRNA-mediated depletion or treatment with chemical inhibitors rapamycin or torin 1 suppressed VCAM1 transcription, which translated to inhibition of VCAM-1 surface expression by HAECs and concomitant decreased adhesion of monocytes. A promoter luciferase assay and chromatin immunoprecipitation indicated that mTOR regulated VCAM1 transcription through a mechanism involving transcription factor GATA6. Activation of PKC-α and an increase in miR-200a-3p expression, caused by mTOR inhibition but not disruption of mTORC1 or mTORC2 singly or together, decreased TNF-α-induced GATA6 expression and its enrichment at the VCAM1 promoter. In conclusion, mTOR inhibition activates PKC-α independently of disruption of mTORC1 and/or mTORC2, which challenges the conventional wisdom regarding mTOR signaling. Moreover, mTOR signals through transcriptional and posttranscriptional mechanisms to elicit maximal cytokine-induced endothelial inflammation that precedes atherosclerosis. NEW & NOTEWORTHY Both mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTORC2 contribute to PKC-α activation in the human aortic endothelium. Inhibition of mTOR is not equivalent to disruption of mTORC1 and/or mTORC2 in affecting human aortic endothelial cell signaling. Specifically, inhibition of mTOR causes PKC-α activation and miR-200a-3p upregulation, which independently suppresses TNF-α-induced transcription factor GATA6 expression and subsequently inhibits VCAM-1 expression and monocytic cell adhesion onto the aortic endothelium.
Identifiants
pubmed: 30462552
doi: 10.1152/ajpheart.00411.2018
pmc: PMC6397389
doi:
Substances chimiques
GATA6 Transcription Factor
0
GATA6 protein, human
0
Tumor Necrosis Factor-alpha
0
Vascular Cell Adhesion Molecule-1
0
TOR Serine-Threonine Kinases
EC 2.7.11.1
Protein Kinase C-alpha
EC 2.7.11.13
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
H408-H420Subventions
Organisme : NCI NIH HHS
ID : P30 CA093373
Pays : United States
Références
Atherosclerosis. 2008 May;198(1):39-48
pubmed: 17980369
EMBO J. 2008 Jul 23;27(14):1919-31
pubmed: 18566587
Circ Res. 1999 Jul 23;85(2):199-207
pubmed: 10417402
Cancer Res. 2007 Sep 15;67(18):8699-707
pubmed: 17875710
J Immunol. 2004 Aug 1;173(3):2041-9
pubmed: 15265939
Atherosclerosis. 2016 May;248:97-109
pubmed: 26994427
Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9902-7
pubmed: 19497867
J Exp Med. 1996 Jul 1;184(1):173-82
pubmed: 8691131
J Cell Biol. 2015 Oct 12;211(1):105-22
pubmed: 26459601
J Exp Med. 2014 Mar 10;211(3):395-404
pubmed: 24516119
Nat Rev Immunol. 2007 Sep;7(9):678-89
pubmed: 17717539
Adv Exp Med Biol. 2015;887:79-100
pubmed: 26662987
Pharmacogenomics. 2013 Sep;14(12):1517-26
pubmed: 24024901
J Immunol. 2008 Jun 1;180(11):7516-24
pubmed: 18490752
Curr Biol. 2004 Jul 27;14(14):1296-302
pubmed: 15268862
Cell Metab. 2008 Nov;8(5):411-24
pubmed: 19046572
Atherosclerosis. 2004 Jan;172(1):31-8
pubmed: 14709354
Cancer Res. 2010 Jan 15;70(2):621-31
pubmed: 20068177
Cell. 2012 Apr 13;149(2):274-93
pubmed: 22500797
Arterioscler Thromb Vasc Biol. 2001 Jun;21(6):917-22
pubmed: 11397697
Circ Res. 2012 Sep 28;111(8):1054-64
pubmed: 22874466
Hepatology. 2009 Aug;50(2):472-80
pubmed: 19585654
J Biol Chem. 2009 Sep 4;284(36):24341-53
pubmed: 19553685
J Clin Invest. 2011 Jun;121(6):2197-209
pubmed: 21606591
Mol Cell Biol. 2010 Feb;30(4):908-21
pubmed: 19995915
Nature. 2005 Feb 3;433(7025):477-80
pubmed: 15690031
Arterioscler Thromb Vasc Biol. 2004 Nov;24(11):2137-42
pubmed: 15345516
Oncotarget. 2017 Jan 17;8(3):4747-4759
pubmed: 27902469
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):2072-2077
pubmed: 28167758
Methods Mol Biol. 2012;821:447-60
pubmed: 22125084
J Immunol. 2005 May 1;174(9):5823-9
pubmed: 15843586
J Pharmacol Exp Ther. 2009 Feb;328(2):419-25
pubmed: 19023042
PLoS One. 2016 Jan 11;11(1):e0146777
pubmed: 26752047
Genes Cells. 2004 Apr;9(4):359-66
pubmed: 15066126
Curr Opin Hematol. 2018 May;25(3):227-236
pubmed: 29547400
J Clin Invest. 2014 Jun;124(6):2696-708
pubmed: 24762440
J Cell Biol. 2013 Apr 15;201(2):293-308
pubmed: 23569215
Mol Cell. 2006 Apr 21;22(2):159-68
pubmed: 16603397
Atherosclerosis. 2010 Nov;213(1):115-21
pubmed: 20864106
J Clin Invest. 2001 May;107(10):1255-62
pubmed: 11375415
J Cell Biol. 2009 Dec 14;187(6):859-74
pubmed: 20008564