Reconstructing patient-specific cerebral aneurysm vasculature for in vitro investigations and treatment efficacy assessments.
3D Printing
Aneurysm
Blood flow
Computational fluid dynamics
Micro-CT
Journal
Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
ISSN: 1532-2653
Titre abrégé: J Clin Neurosci
Pays: Scotland
ID NLM: 9433352
Informations de publication
Date de publication:
Mar 2019
Mar 2019
Historique:
received:
30
07
2018
accepted:
27
10
2018
pubmed:
25
11
2018
medline:
2
4
2019
entrez:
25
11
2018
Statut:
ppublish
Résumé
Perianeurysmal hemodynamics play a vital role in the initiation, growth and rupture of intracranial aneurysms. In vitro investigations of aneurysmal hemodynamics are helpful to visualize and measure blood flow, and aiding surgical planning approaches. Improving in vitro model creation can improve the feasibility and accuracy of hemodynamic investigations and surgical planning, improving clinical value. In this study, in vitro models were created from three-dimensional rotational angiography (3DRA) of six patients harboring intracranial aneurysms using a multi-step process involving 3D printing, index of refraction matching and silicone casting that renders the models transparent for flow visualization. Each model was treated with the same commercially-available, patient-specific, endovascular devices (coils and/or stents). All models were scanned by synchrotron X-ray microtomography to obtain high-resolution imaging of the vessel lumen, aneurysmal sac and endovascular devices. Dimensional accuracy was compared by quantifying the differences between the microtomographic reconstructions of the fabricated phantoms and the original 3DRA obtained during patient treatment. True-scale in vitro flow phantoms were successfully created for all six patients. Optical transparency was verified by using an index of refraction matched working fluid that replicated the mechanical behavior of blood. Synchrotron imaging of vessel lumen, aneurysmal sac and endovascular devices was successfully obtained, and dimensional errors were found to be O(100 μm). The creation of dimensionally-accurate, optically-transparent flow phantoms of patient-specific intracranial aneurysms is feasible using 3D printing technology. Such models may enable in vitro investigations of aneurysmal hemodynamics to aid in treatment planning and outcome prediction to devise optimal patient-specific neurointerventional strategies.
Identifiants
pubmed: 30470652
pii: S0967-5868(18)31031-2
doi: 10.1016/j.jocn.2018.10.103
pmc: PMC6380923
mid: NIHMS1513216
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
153-159Subventions
Organisme : NINDS NIH HHS
ID : R01 NS088072
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS105692
Pays : United States
Organisme : NINDS NIH HHS
ID : R03 NS078539
Pays : United States
Informations de copyright
Copyright © 2018 Elsevier Ltd. All rights reserved.
Références
AJNR Am J Neuroradiol. 2000 Apr;21(4):757-60
pubmed: 10782791
Annu Rev Biomed Eng. 1999;1:299-329
pubmed: 11701491
Stroke. 2003 Jan;34(1):187-92
pubmed: 12511772
Neuroradiology. 2003 Jun;45(6):404-9
pubmed: 12719951
Lancet. 2003 Jul 12;362(9378):103-10
pubmed: 12867109
Lancet. 2005 Sep 3-9;366(9488):809-17
pubmed: 16139655
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):438-45
pubmed: 17354802
AJNR Am J Neuroradiol. 2008 Oct;29(9):1761-7
pubmed: 18599576
Neurosurgery. 2009 Aug;65(2):311-5; discussion 315
pubmed: 19625910
Ann Biomed Eng. 2011 Feb;39(2):884-96
pubmed: 20972626
Stroke. 2011 Mar;42(3):745-53
pubmed: 21233477
Surg Innov. 2011 Sep;18(3):294-306
pubmed: 21307017
AJNR Am J Neuroradiol. 2011 Nov-Dec;32(10):1935-41
pubmed: 21885712
AJNR Am J Neuroradiol. 2013 Feb;34(2):266-70
pubmed: 22422180
J Neurosurg. 2012 Aug;117(2):276-83
pubmed: 22680247
IEEE Trans Med Imaging. 2013 Jan;32(1):119-29
pubmed: 23008248
J Neurointerv Surg. 2013 Nov;5 Suppl 3:iii38-42
pubmed: 23048176
AJNR Am J Neuroradiol. 2014 Jul;35(7):1254-62
pubmed: 23598838
J Magn Reson Imaging. 2014 Jan;39(1):120-31
pubmed: 24151067
Cardiovasc Diagn Ther. 2014 Apr;4(2):207-12
pubmed: 24834416
Ann Biomed Eng. 2015 Jan;43(1):122-38
pubmed: 25186432
Proc SPIE Int Soc Opt Eng. 2014 Mar 13;9038:90380M
pubmed: 25300886
J Neurointerv Surg. 2016 May;8(5):517-20
pubmed: 25862767
AJNR Am J Neuroradiol. 2016 Mar;37(3):490-6
pubmed: 26450536
Physiol Meas. 2015 Nov;36(11):2301-17
pubmed: 26450643
J Neurointerv Surg. 2017 Aug;9(8):0
pubmed: 27405312
Acta Neurochir (Wien). 2016 Sep;158(9):1711-20
pubmed: 27416860