Flexible Locally Weighted Penalized Regression With Applications on Prediction of Alzheimer's Disease Neuroimaging Initiative's Clinical Scores.
Journal
IEEE transactions on medical imaging
ISSN: 1558-254X
Titre abrégé: IEEE Trans Med Imaging
Pays: United States
ID NLM: 8310780
Informations de publication
Date de publication:
06 2019
06 2019
Historique:
pubmed:
12
12
2018
medline:
10
3
2020
entrez:
12
12
2018
Statut:
ppublish
Résumé
In recent years, we have witnessed the explosion of large-scale data in various fields. Classical statistical methodologies, such as linear regression or generalized linear regression, often show inadequate performance on heterogeneous data because the key homogeneity assumption fails. In this paper, we present a flexible framework to handle heterogeneous populations that can be naturally grouped into several ordered subtypes. A local model technique utilizing ordinal class labels during the training stage is proposed. We define a new "progression score" that captures the progression of ordinal classes, and use a truncated Gaussian kernel to construct the weight function in a local regression framework. Furthermore, given the weights, we apply sparse shrinkage on the local fitting to handle high dimensionality. In this way, our local model is able to conduct variable selection on each query point. Numerical studies show the superiority of our proposed method over several existing ones. Our method is also applied to the Alzheimer's Disease Neuroimaging Initiative data to make predictions on the longitudinal clinical scores based on different modalities of baseline brain image features.
Identifiants
pubmed: 30530315
doi: 10.1109/TMI.2018.2884943
pmc: PMC7388691
mid: NIHMS1602886
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1398-1408Subventions
Organisme : NIBIB NIH HHS
ID : R01 EB008374
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM126550
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB022880
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG041721
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG049371
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG042599
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG053867
Pays : United States
Références
J R Coll Physicians Lond. 1997 Sep-Oct;31(5):546-51
pubmed: 9429194
J Stat Softw. 2010;33(1):1-22
pubmed: 20808728
Hippocampus. 2009 Nov;19(11):1055-64
pubmed: 19309039
Lancet. 2016 Oct 8;388(10053):1545-1602
pubmed: 27733282
Stat Methods Med Res. 2019 Mar;28(3):835-845
pubmed: 29168432
J Alzheimers Dis. 2011;25(2):347-57
pubmed: 21422522
Brain Struct Funct. 2016 Sep;221(7):3787-801
pubmed: 26476928
J Am Geriatr Soc. 1992 Sep;40(9):922-35
pubmed: 1512391
Alzheimer Dis Assoc Disord. 2004 Oct-Dec;18(4):236-40
pubmed: 15592137
JAMA Neurol. 2014 Aug;71(8):961-70
pubmed: 24886908
J Am Stat Assoc. 2012 Jul 1;107(499):1129-1139
pubmed: 25249709
Brain. 2016 Jul;139(Pt 7):1877-90
pubmed: 27190025
Neurobiol Aging. 2016 Oct;46:180-91
pubmed: 27500865
IEEE Trans Biomed Eng. 2016 Mar;63(3):607-18
pubmed: 26276982
Neuroimage. 2010 Jul 15;51(4):1405-13
pubmed: 20347044
Neuroimage. 2012 Nov 15;63(3):1478-86
pubmed: 22885136
Biol Psychiatry. 2008 Jan 1;63(1):118-24
pubmed: 17555720
Neuroimage. 2016 Jul 1;134:658-670
pubmed: 27095307
Hum Brain Mapp. 2017 Dec;38(12):5890-5904
pubmed: 28856766
Med Image Anal. 2017 May;38:205-214
pubmed: 26674971
Front Neurol. 2018 May 04;9:235
pubmed: 29780348