Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network.
Journal
Journal of chemical theory and computation
ISSN: 1549-9626
Titre abrégé: J Chem Theory Comput
Pays: United States
ID NLM: 101232704
Informations de publication
Date de publication:
12 Feb 2019
12 Feb 2019
Historique:
pubmed:
15
12
2018
medline:
23
2
2019
entrez:
15
12
2018
Statut:
ppublish
Résumé
Accurate force fields are crucial for molecular dynamics investigation of complex biological systems. Building accurate protein force fields from quantum mechanical (QM) calculations is challenging due to the complexity of proteins and high computational costs of QM methods. In order to overcome these two difficulties, here we developed the residue-based systematic molecular fragmentation method to partition general proteins into only 20 types of amino acid dipeptides and one type of peptide bond at level 1. The total energy of proteins is the combination of the energies of these fragments. Each type of the fragments is then parametrized using neural network (NN) representation of the QM reference. Adopting NN representation can circumvent the limitation of the analytic form of classical molecular mechanics (MM) force fields. Using MM force fields as the baseline, our method adds NN representation of QM corrections at the length scale of amino acid dipeptides. We tested our force fields for both homogeneous and heterogeneous polypeptides. Energy and forces predicted by our force fields compare favorably with full QM calculations from tripeptides to decapeptides. Our development provides an efficient and accurate method of building protein force fields fully from ab initio QM calculations.
Identifiants
pubmed: 30550274
doi: 10.1021/acs.jctc.8b00895
pmc: PMC6372335
mid: NIHMS1005776
doi:
Substances chimiques
Amino Acids
0
Dipeptides
0
Peptides
0
Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1409-1417Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM061870
Pays : United States
Références
Phys Rev Lett. 1991 Mar 18;66(11):1438-1441
pubmed: 10043209
Nat Struct Biol. 2002 Sep;9(9):646-52
pubmed: 12198485
J Comput Chem. 2002 Dec;23(16):1497-506
pubmed: 12395419
J Comput Chem. 2004 Aug;25(11):1400-15
pubmed: 15185334
J Chem Phys. 2005 Jan 15;122(3):31103
pubmed: 15740185
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6825-30
pubmed: 15867154
J Chem Phys. 2005 Apr 15;122(15):154102
pubmed: 15945620
Chem Rev. 2006 May;106(5):1589-615
pubmed: 16683746
J Chem Phys. 2006 May 7;124(17):174104
pubmed: 16689564
J Chem Phys. 2006 Sep 14;125(10):104104
pubmed: 16999512
J Phys Chem A. 2007 Mar 22;111(11):2193-9
pubmed: 17388268
Phys Rev Lett. 2007 Apr 6;98(14):146401
pubmed: 17501293
Phys Rev Lett. 2008 May 9;100(18):185501
pubmed: 18518388
J Chem Theory Comput. 2007 Nov;3(6):1890-1900
pubmed: 18985172
J Comput Chem. 2009 Jul 30;30(10):1545-614
pubmed: 19444816
Phys Rev Lett. 2010 Apr 2;104(13):136403
pubmed: 20481899
J Chem Theory Comput. 2009 Feb 17;5(3):459-467
pubmed: 20490369
J Comput Chem. 2011 May;32(7):1456-65
pubmed: 21370243
Biophys J. 2011 May 4;100(9):L47-9
pubmed: 21539772
Chem Rev. 2012 Jan 11;112(1):632-72
pubmed: 21866983
PLoS One. 2012;7(2):e32131
pubmed: 22384157
Phys Rev Lett. 2012 Feb 3;108(5):058301
pubmed: 22400967
J Chem Phys. 2012 Aug 14;137(6):064113
pubmed: 22897261
Chemphyschem. 2013 Jan 14;14(1):108-15
pubmed: 23239545
J Chem Phys. 2013 Aug 7;139(5):054112
pubmed: 23927248
J Chem Theory Comput. 2013;9(9):4046-4063
pubmed: 24163642
J Chem Theory Comput. 2013 Dec 10;9(12):5430-5449
pubmed: 24459460
J Phys Condens Matter. 2014 May 7;26(18):183001
pubmed: 24758952
J Phys Chem B. 1998 Apr 30;102(18):3586-616
pubmed: 24889800
J Chem Phys. 2014 Jul 21;141(3):034109
pubmed: 25053303
J Chem Phys. 2014 Sep 7;141(9):094108
pubmed: 25194365
Chem Rev. 2015 Jun 24;115(12):5643-77
pubmed: 25849163
J Phys Chem Lett. 2015 Jun 18;6(12):2326-31
pubmed: 26113956
J Chem Theory Comput. 2015 May 12;11(5):2187-98
pubmed: 26574419
J Chem Theory Comput. 2014 Apr 8;10(4):1599-607
pubmed: 26580372
J Chem Theory Comput. 2013 Aug 13;9(8):3404-19
pubmed: 26584096
J Chem Theory Comput. 2012 Aug 14;8(8):2669-75
pubmed: 26592112
J Chem Theory Comput. 2013 Dec 10;9(12):5395-403
pubmed: 26592277
J Chem Theory Comput. 2007 Jan;3(1):46-53
pubmed: 26627150
J Chem Theory Comput. 2015 Dec 8;11(12):5897-905
pubmed: 26642993
J Chem Theory Comput. 2016 Feb 9;12(2):765-73
pubmed: 26730889
Chem Rev. 2016 Jul 13;116(13):7501-28
pubmed: 27186804
J Chem Phys. 2016 Jun 14;144(22):224107
pubmed: 27305996
J Chem Theory Comput. 2016 Oct 11;12(10):4934-4946
pubmed: 27552235
Phys Chem Chem Phys. 2016 Oct 19;18(41):28704-28725
pubmed: 27722603
J Chem Phys. 2016 Nov 21;145(19):194504
pubmed: 27875875
J Chem Phys. 2017 Oct 28;147(16):161732
pubmed: 29096448
Chem Sci. 2017 Oct 1;8(10):6924-6935
pubmed: 29147518
J Chem Theory Comput. 2018 Mar 13;14(3):1442-1455
pubmed: 29438614
J Phys Chem Lett. 2018 Jun 21;9(12):3232-3240
pubmed: 29775313
J Med Chem. 1996 Mar 29;39(7):1521-30
pubmed: 8691483
Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697
pubmed: 9895674
Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789
pubmed: 9944570