Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors.
Animals
Carbamates
/ chemical synthesis
Catalytic Domain
Cell Line
Drosophila
/ genetics
Enzyme Assays
Glutamate Carboxypeptidase II
/ antagonists & inhibitors
Humans
Hydrogen Bonding
Models, Molecular
Protease Inhibitors
/ chemical synthesis
Protein Binding
Quantum Theory
Stereoisomerism
Urea
/ analogs & derivatives
Crystal structure
Glutamate carboxypeptidase II
Metallopeptidase
Prostate-specific membrane antigen
Journal
Bioorganic & medicinal chemistry
ISSN: 1464-3391
Titre abrégé: Bioorg Med Chem
Pays: England
ID NLM: 9413298
Informations de publication
Date de publication:
15 01 2019
15 01 2019
Historique:
received:
27
09
2018
revised:
07
11
2018
accepted:
14
11
2018
pubmed:
16
12
2018
medline:
17
9
2019
entrez:
16
12
2018
Statut:
ppublish
Résumé
A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII's preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.
Identifiants
pubmed: 30552009
pii: S0968-0896(18)31611-0
doi: 10.1016/j.bmc.2018.11.022
pmc: PMC6374116
mid: NIHMS1516502
pii:
doi:
Substances chimiques
Carbamates
0
Protease Inhibitors
0
ZJ43
0
Urea
8W8T17847W
Glutamate Carboxypeptidase II
EC 3.4.17.21
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
255-264Subventions
Organisme : NIA NIH HHS
ID : R01 AG057420
Pays : United States
Organisme : NIMH NIH HHS
ID : P30 MH075673
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA161056
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH110246
Pays : United States
Organisme : NIMH NIH HHS
ID : P01 MH105280
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS093416
Pays : United States
Organisme : NIMH NIH HHS
ID : R25 MH080661
Pays : United States
Informations de copyright
Copyright © 2018 Elsevier Ltd. All rights reserved.
Références
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67
pubmed: 21460454
FEBS J. 2009 Aug;276(16):4448-62
pubmed: 19678840
Phys Rev Lett. 2003 Oct 3;91(14):146401
pubmed: 14611541
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21
pubmed: 20057044
Nat Rev Drug Discov. 2005 Dec;4(12):1015-26
pubmed: 16341066
J Med Chem. 2004 Mar 25;47(7):1729-38
pubmed: 15027864
FEBS J. 2016 Jul;283(13):2528-45
pubmed: 27208881
Clin Cancer Res. 2008 May 15;14(10):3036-43
pubmed: 18483369
J Med Chem. 2004 Jul 1;47(14):3697-9
pubmed: 15214797
Chem Soc Rev. 2014 Jul 21;43(14):5032-41
pubmed: 24676339
J Med Chem. 2008 Dec 25;51(24):7737-43
pubmed: 19053759
Acta Crystallogr D Biol Crystallogr. 2004 Aug;60(Pt 8):1355-63
pubmed: 15272157
J Chem Inf Model. 2018 Jan 22;58(1):48-60
pubmed: 29182321
Biol Psychiatry. 2008 Jan 1;63(1):86-91
pubmed: 17597589
Eur J Nucl Med Mol Imaging. 2015 May;42(6):987-8
pubmed: 25573634
J Chem Phys. 2010 Apr 21;132(15):154104
pubmed: 20423165
Curr Med Chem. 2012;19(9):1282-94
pubmed: 22304717
FEBS J. 2007 Sep;274(18):4731-41
pubmed: 17714508
Brain Res. 2011 Jun 13;1395:62-73
pubmed: 21565332
Adv Pharmacol. 2016;76:215-55
pubmed: 27288079
EMBO J. 2006 Mar 22;25(6):1375-84
pubmed: 16467855
Biochemistry. 2009 May 19;48(19):4126-38
pubmed: 19301871
J Med Chem. 2001 Feb 1;44(3):298-301
pubmed: 11462970
J Nucl Med. 2017 Sep;58(Suppl 2):17S-26S
pubmed: 28864607
Curr Med Chem. 2012;19(9):1300-9
pubmed: 22304708
J Nucl Med. 2017 Sep;58(Suppl 2):67S-76S
pubmed: 28864615
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
pubmed: 20383002
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32
pubmed: 20124692
J Med Chem. 2016 Jan 14;59(1):206-18
pubmed: 26629713
J Med Chem. 2011 Nov 10;54(21):7535-46
pubmed: 21923190
Mol Pain. 2008 Aug 01;4:31
pubmed: 18673570
Angiogenesis. 2016 Oct;19(4):487-500
pubmed: 27387982
JCI Insight. 2016 Aug 4;1(12):
pubmed: 27536732
J Neurochem. 2004 May;89(4):876-85
pubmed: 15140187
J Am Chem Soc. 2010 Sep 15;132(36):12711-6
pubmed: 20726553