Skewed X-inactivation is common in the general female population.
Calcium-Binding Proteins
/ genetics
Female
Humans
Intracellular Signaling Peptides and Proteins
/ genetics
Male
Membrane Glycoproteins
/ genetics
Netherlands
Polymorphism, Single Nucleotide
Population
/ genetics
Receptors, Cytoplasmic and Nuclear
/ genetics
Receptors, Peptide
/ genetics
Septins
/ genetics
X Chromosome Inactivation
Journal
European journal of human genetics : EJHG
ISSN: 1476-5438
Titre abrégé: Eur J Hum Genet
Pays: England
ID NLM: 9302235
Informations de publication
Date de publication:
03 2019
03 2019
Historique:
received:
17
04
2018
accepted:
28
09
2018
revised:
30
07
2018
pubmed:
16
12
2018
medline:
21
5
2019
entrez:
16
12
2018
Statut:
ppublish
Résumé
X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants.
Identifiants
pubmed: 30552425
doi: 10.1038/s41431-018-0291-3
pii: 10.1038/s41431-018-0291-3
pmc: PMC6460563
doi:
Substances chimiques
Calcium-Binding Proteins
0
Intracellular Signaling Peptides and Proteins
0
Membrane Glycoproteins
0
REPS2 protein, human
0
Receptors, Cytoplasmic and Nuclear
0
Receptors, Peptide
0
signal sequence receptor
0
SEPTIN6 protein, human
EC 3.6.1.-
Septins
EC 3.6.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
455-465Investigateurs
Bastiaan T Heijmans
(BT)
Peter Ac 't Hoen
(PA)
Joyce van Meurs
(J)
Dorret I Boomsma
(DI)
René Pool
(R)
Jenny van Dongen
(J)
Jouke J Hottenga
(JJ)
Marleen Mj van Greevenbroek
(MM)
Coen DA Stehouwer
(CD)
Carla Jh van der Kallen
(CJ)
Casper G Schalkwijk
(CG)
Cisca Wijmenga
(C)
Sasha Zhernakova
(S)
Ettje F Tigchelaar
(EF)
P Eline Slagboom
(PE)
Marian Beekman
(M)
Joris Deelen
(J)
Diana van Heemst
(D)
Jan H Veldink
(JH)
Leonard H van den Berg
(LH)
Cornelia M van Duijn
(CM)
Bert A Hofman
(BA)
André G Uitterlinden
(AG)
P Mila Jhamai
(PM)
Michael Verbiest
(M)
H Eka D Suchiman
(HED)
Marijn Verkerk
(M)
Ruud van der Breggen
(R)
Jeroen van Rooij
(J)
Nico Lakenberg
(N)
Hailiang Mei
(H)
Jan Bot
(J)
Dasha V Zhernakova
(DV)
Peter van 't Hof
(P)
Patrick Deelen
(P)
Irene Nooren
(I)
Matthijs Moed
(M)
Martijn Vermaat
(M)
René Luijk
(R)
Marc Jan Bonder
(M)
Maarten van Iterson
(M)
Freerk van Dijk
(F)
Michiel van Galen
(M)
Wibowo Arindrarto
(W)
Szymon M Kiełbasa
(SM)
Morris A Swertz
(MA)
Erik W van Zwet
(EW)
Aaron Isaacs
(A)
Rick Jansen
(R)
Lude Franke
(L)
L C Francioli
(LC)
A Menelaou
(A)
S L Pulit
(SL)
F van Dijk
(F)
P F Palamara
(PF)
C C Elbers
(CC)
P B Neerincx
(PB)
K Ye
(K)
V Guryev
(V)
W P Kloosterman
(WP)
P Deelen
(P)
A Abdellaoui
(A)
E M van Leeuwen
(EM)
M van Oven
(M)
M Vermaat
(M)
M Li
(M)
J F Laros
(JF)
L C Karssen
(LC)
A Kanterakis
(A)
N Amin
(N)
J J Hottenga
(JJ)
E W Lameijer
(EW)
M Kattenberg
(M)
M Dijkstra
(M)
H Byelas
(H)
J van Setten
(J)
B D van Schaik
(BD)
J Bot
(J)
I J Nijman
(IJ)
I Renkens
(I)
T Marschall
(T)
A Schönhuth
(A)
J Y Hehir-Kwa
(JY)
R E Handsaker
(RE)
P Polak
(P)
M Sohail
(M)
D Vuzman
(D)
F Hormozdiari
(F)
D van Enckevort
(D)
H Mei
(H)
V Koval
(V)
M H Moed
(MH)
K J van der Velde
(KJ)
F Rivadeneira
(F)
K Estrada
(K)
C Medina-Gomez
(C)
A Isaacs
(A)
S A McCarroll
(SA)
M Beekman
(M)
A J de Craen
(AJ)
H E Suchiman
(HE)
B A Hofman
(BA)
B Oostra
(B)
A G Uitterlinden
(AG)
G Willemsen
(G)
M Platteel
(M)
J H Veldink
(JH)
L H van den Berg
(LH)
S J Pitts
(SJ)
S Potluri
(S)
P Sundar
(P)
D R Cox
(DR)
S R Sunyaev
(SR)
J T den Dunnen
(JT)
M Stoneking
(M)
P de Knijff
(P)
M Kayser
(M)
Q Li
(Q)
Y Li
(Y)
Y Du
(Y)
R Chen
(R)
H Cao
(H)
N Li
(N)
S Cao
(S)
J Wang
(J)
J A Bovenberg
(JA)
I Pe'er
(I)
P E Slagboom
(PE)
C M van Duijn
(CM)
D I Boomsma
(DI)
G J van Ommen
(GJ)
P I de Bakker
(PI)
M A Swertz
(MA)
C Wijmenga
(C)
Références
Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14180-2
pubmed: 10588671
Hum Genet. 2000 Oct;107(4):343-9
pubmed: 11129333
Clin Genet. 2000 Nov;58(5):353-63
pubmed: 11140834
Semin Reprod Med. 2001 Jun;19(2):183-91
pubmed: 11480916
Ann Neurol. 2002 Nov;52(5):683-8
pubmed: 12402273
Nature. 1961 Apr 22;190:372-3
pubmed: 13764598
Science. 2004 Jan 30;303(5658):666-9
pubmed: 14752160
Hum Genet. 2004 Oct;115(5):387-92
pubmed: 15338278
Nature. 2005 Mar 17;434(7031):400-4
pubmed: 15772666
Am J Hum Genet. 2006 Sep;79(3):493-9
pubmed: 16909387
Hum Genet. 2009 Sep;126(3):363-73
pubmed: 19396465
Nature. 1991 Jan 3;349(6304):38-44
pubmed: 1985261
Mol Biol Evol. 2010 Nov;27(11):2446-50
pubmed: 20534706
Nat Rev Genet. 2011 Jul 18;12(8):542-53
pubmed: 21765457
Orphanet J Rare Dis. 2012 Jan 26;7:10
pubmed: 22280810
Blood. 2012 Mar 29;119(13):e100-9
pubmed: 22286197
PLoS One. 2013;8(3):e57977
pubmed: 23469258
Mol Biol Evol. 2013 Dec;30(12):2588-601
pubmed: 24023392
Genome Biol. 2013 Nov 01;14(11):R122
pubmed: 24176135
Brain. 2014 Mar;137(Pt 3):693-706
pubmed: 24480483
Nat Rev Genet. 2014 Jun;15(6):367-78
pubmed: 24733023
Nat Genet. 2014 Aug;46(8):818-25
pubmed: 24974849
Genome Biol. 2015 Sep 17;16:195
pubmed: 26381377
Cell. 2016 Sep 22;167(1):285
pubmed: 27662094
Nat Genet. 2017 Jan;49(1):139-145
pubmed: 27918533
Cell Stem Cell. 2017 Jan 5;20(1):102-111
pubmed: 27989768
Nat Struct Mol Biol. 2017 Mar;24(3):226-233
pubmed: 28134930
Sci Rep. 2017 Sep 7;7(1):10794
pubmed: 28883481
Nature. 2017 Oct 11;550(7675):244-248
pubmed: 29022598
Development. 1987 Mar;99(3):371-82
pubmed: 3653008
J Med Genet. 1986 Apr;23(2):171-3
pubmed: 3712394
Ann Hum Genet. 1973 Jul;37(1):39-48
pubmed: 4759903
Chromosoma. 1982;85(2):275-86
pubmed: 6180866
J Med Genet. 1983 Dec;20(6):461-3
pubmed: 6655672
Am J Hum Genet. 1981 Jul;33(4):513-8
pubmed: 7258185
J Med Genet. 1981 Dec;18(6):442-7
pubmed: 7334502
Blood. 1994 Feb 15;83(4):931-8
pubmed: 8111064
J Med Genet. 1993 Aug;30(8):651-4
pubmed: 8411051
J Cell Biol. 1996 Feb;132(3):259-75
pubmed: 8636206
Blood. 1996 Jul 1;88(1):59-65
pubmed: 8704202
Br J Haematol. 1997 Sep;98(3):512-9
pubmed: 9332303