Ex vivo conditioning with IL-12 protects tumor-infiltrating CD8
Adoptive Transfer
Animals
CD8-Positive T-Lymphocytes
/ drug effects
Cell Line, Tumor
Cytotoxicity, Immunologic
/ drug effects
Humans
Interferon-gamma
/ physiology
Interleukin-12
/ pharmacology
Lymphocyte Activation
Lymphocytes, Tumor-Infiltrating
/ drug effects
Mice
Mice, Inbred C57BL
Receptors, Interferon
/ analysis
Interferon gamma Receptor
Adoptive T cells transfer
Melanoma/skin cancers
Models of host–tumor interactions
PD-1
Tumor microenvironment
Tumor promotion and progression
Journal
Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732
Informations de publication
Date de publication:
Mar 2019
Mar 2019
Historique:
received:
28
02
2018
accepted:
28
11
2018
pubmed:
16
12
2018
medline:
29
3
2019
entrez:
16
12
2018
Statut:
ppublish
Résumé
Optimal ex vivo expansion protocols for adoptive cell therapy (ACT) must yield T cells able to effectively home to tumors and survive the inhospitable conditions of the tumor microenvironment (TME), while simultaneously exerting persistent anti-tumor effector functions. Our previous work has shown that ex vivo activation in the presence of IL-12 can induce optimal expansion of murine CD8
Identifiants
pubmed: 30552459
doi: 10.1007/s00262-018-2280-3
pii: 10.1007/s00262-018-2280-3
pmc: PMC6428620
mid: NIHMS1516739
doi:
Substances chimiques
Receptors, Interferon
0
Interleukin-12
187348-17-0
Interferon-gamma
82115-62-6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
395-405Subventions
Organisme : NCI NIH HHS
ID : K01 CA134927
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA188767
Pays : United States
Organisme : National Cancer Institute (US)
ID : K01CA134927
Organisme : National Cancer Institute (US)
ID : R21CA188767
Références
J Immunol. 1999 Mar 15;162(6):3256-62
pubmed: 10092777
J Leukoc Biol. 2001 Dec;70(6):950-60
pubmed: 11739558
J Exp Med. 2002 Oct 7;196(7):999-1005
pubmed: 12370261
J Immunol. 2002 Dec 15;169(12):6842-9
pubmed: 12471116
Nat Rev Cancer. 2003 Sep;3(9):666-75
pubmed: 12951585
Clin Cancer Res. 2004 Aug 1;10(15):5101-10
pubmed: 15297413
Immunol Rev. 2006 Jun;211:81-92
pubmed: 16824119
J Immunol. 2007 Aug 15;179(4):2074-81
pubmed: 17675465
J Immunol. 2007 Aug 15;179(4):2115-25
pubmed: 17675470
Cancer Immunol Immunother. 2008 Apr;57(4):563-72
pubmed: 17726606
Nat Rev Cancer. 2008 Apr;8(4):299-308
pubmed: 18354418
J Immunol. 2008 Dec 15;181(12):8576-84
pubmed: 19050277
Blood. 2011 Oct 6;118(14):3890-900
pubmed: 21832277
Am J Cancer Res. 2011 Aug 30;1(7):882-96
pubmed: 21915391
Immunity. 2012 Jul 27;37(1):1-2
pubmed: 22840835
PLoS Pathog. 2013 Mar;9(3):e1003208
pubmed: 23516358
J Immunol. 2013 Aug 1;191(3):1011-5
pubmed: 23804712
Immunol Res. 2013 Dec;57(1-3):23-33
pubmed: 24218360
J Exp Med. 2014 Jan 13;211(1):105-20
pubmed: 24367005
Br J Cancer. 2015 Apr 28;112(9):1501-9
pubmed: 25867264
Cell Death Dis. 2015 Jun 18;6:e1792
pubmed: 26086965
Nat Rev Immunol. 2015 Aug;15(8):486-99
pubmed: 26205583
Cell Rep. 2017 May 9;19(6):1189-1201
pubmed: 28494868
Science. 1993 Mar 19;259(5102):1742-5
pubmed: 8456301
J Immunol. 1996 Sep 1;157(5):1935-43
pubmed: 8757312
J Exp Med. 1998 Jul 20;188(2):277-86
pubmed: 9670040
J Virol. 1998 Oct;72(10):7815-21
pubmed: 9733817