Nasal insulin administration does not affect hepatic glucose production at systemic fasting insulin levels.
Administration, Intranasal
Adult
Blood Glucose
/ drug effects
Cross-Over Studies
Gluconeogenesis
/ drug effects
Glucose
/ metabolism
Healthy Volunteers
Hepatic Veins
Humans
Hypoglycemic Agents
/ administration & dosage
Insulin
/ administration & dosage
Liver
/ drug effects
Male
Radial Artery
Random Allocation
Young Adult
basal insulin
clinical physiology
liver
Journal
Diabetes, obesity & metabolism
ISSN: 1463-1326
Titre abrégé: Diabetes Obes Metab
Pays: England
ID NLM: 100883645
Informations de publication
Date de publication:
04 2019
04 2019
Historique:
received:
24
08
2018
revised:
11
12
2018
accepted:
13
12
2018
pubmed:
16
12
2018
medline:
8
9
2020
entrez:
16
12
2018
Statut:
ppublish
Résumé
To evaluate the effects of brain insulin on endogenous glucose production in fasting humans, with a focus on hepatic glucose release by performing a randomized, placebo-controlled, blinded, crossover experiment. On two separate days, Plasma insulin concentrations were similar on the two study days, and no differences in whole-body endogenous glucose production or hepato-splanchnic glucose turnover were detected. Nasal administration of insulin does not influence whole-body or hepatic glucose production in fasting humans. By contrast, pharmacological delivery of insulin to the brain might modulate insulin effectiveness in glucose-producing tissue when circulating insulin levels are elevated; therefore, the metabolic consequences of brain insulin action appear to be dependent on metabolic prandial status.
Substances chimiques
Blood Glucose
0
Hypoglycemic Agents
0
Insulin
0
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
993-1000Informations de copyright
© 2018 John Wiley & Sons Ltd.
Références
Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Haring HU. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiological Rev. 2016;96(4):1169-1209.
Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514-516.
Schmid V, Kullmann S, Gfrorer W, et al. Safety of intranasal human insulin: a review. Diabetes Obes Metab. 2018;20(7):1563-1577.
Heni M, Kullmann S, Preissl H, Fritsche A, Haring HU. Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol. 2015;11(12):701-711.
Kleinridders A, Ferris HA, Cai W, Kahn CR. Insulin action in brain regulates systemic metabolism and brain function. Diabetes. 2014;63(7):2232-2243.
Kullmann S, Heni M, Fritsche A, Preissl H. Insulin action in the human brain: evidence from neuroimaging studies. J Neuroendocrinol. 2015;27(6):419-423.
Plum L, Schubert M, Bruning JC. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16(2):59-65.
Heni M, Wagner R, Kullmann S, et al. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes. 2014;63(12):4083-4088.
Heni M, Wagner R, Kullmann S, et al. Hypothalamic and striatal insulin action suppresses endogenous glucose production and may stimulate glucose uptake during Hyperinsulinemia in lean but not in overweight men. Diabetes. 2017;66(7):1797-1806.
Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell Metab. 2005;1(1):53-61.
Gancheva S, Koliaki C, Bierwagen A, et al. Effects of intranasal insulin on hepatic fat accumulation and energy metabolism in humans. Diabetes. 2015;64(6):1966-1975.
Dash S, Xiao C, Morgantini C, Koulajian K, Lewis GF. Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations. Diabetes. 2015;64(3):766-774.
Xiao C, Dash S, Stahel P, Lewis GF. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men. Diabetes Obes Metab. 2018;20(7):1751-1754.
Hansen JS, Clemmesen JO, Secher NH, et al. Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans. Mol Metab. 2015;4(8):551-560.
Borno A, Foged L, Van HG. Glucose and glycerol concentrations and their tracer enrichment measurements using liquid chromatography tandem mass spectrometry. J Mass Spectrom. 2014;49(10):980-988.
Steele R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959;82:420-430.
Wolfe RR, Chinkes DL. Isotope Tracers in Metabolic Research: Principles and Practice of Kinetic Analysis. Hoboken, New Jersey: Wiley; 2005.
DeFronzo RA, Ferrannini E, Hendler R, Felig P, Wahren J. Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia in man. Diabetes. 1983;32(1):35-45.
Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990;85(6):1844-1852.
Kullmann S, Veit R, Peter A, et al. Dose-dependent effects of intranasal insulin on resting-state brain activity. J Clin Endocrinol Metab. 2018;103(1):253-262.
Thienel M, Wilhelm I, Benedict C, Born J, Hallschmid M. Intranasal insulin decreases circulating cortisol concentrations during early sleep in elderly humans. Neurobiol Aging. 2017;54:170-174.
Chen M, Woods SC, Porte D Jr. Effect of cerebral intraventricular insulin on pancreatic insulin secretion in the dog. Diabetes. 1975;24(10):910-914.
Kullmann S, Fritsche A, Wagner R, et al. Hypothalamic insulin responsiveness is associated with pancreatic insulin secretion in humans. Physiol Behav. 2017;176:134-138.
Ekberg K, Landau BR, Wajngot A, et al. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes. 1999;48(2):292-298.
Woerle HJ, Meyer C, Popa EM, Cryer PE, Gerich JE. Renal compensation for impaired hepatic glucose release during hypoglycemia in type 2 diabetes: further evidence for hepatorenal reciprocity. Diabetes. 2003;52(6):1386-1392.
Bjorkman O, Felig P, Wahren J. The contrasting responses of splanchnic and renal glucose output to gluconeogenic substrates and to hypoglucagonemia in 60-h-fasted humans. Diabetes. 1980;29(8):610-616.
Tschritter O, Hennige AM, Preissl H, et al. Cerebrocortical beta activity in overweight humans responds to insulin detemir. PLoS One. 2007;2(11):e1196.
Benedict C, Hallschmid M, Schmitz K, et al. Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology. 2007;32(1):239-243.
Craft S, Claxton A, Baker LD, et al. Effects of regular and long-acting insulin on cognition and Alzheimer's disease biomarkers: a pilot clinical trial. J Alzheimers Dis. 2017;57(4):1325-1334.
Horwitz DL, Starr JI, Mako ME, Blackard WG, Rubenstein AH. Proinsulin, insulin, and C-peptide concentrations in human portal and peripheral blood. J Clin Invest. 1975;55(6):1278-1283.
Heni M, Schopfer P, Peter A, et al. Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans. Acta Diabetol. 2014;51(4):679-681.
Schwartz MW, Sipols A, Kahn SE, et al. Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid. Am J Physiol. 1990;259(3 Pt 1):E378-E383.
Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA. Unconditioned and conditioned effects of intranasally administered insulin vs placebo in healthy men: a randomised controlled trial. Diabetologia. 2011;54(6):1502-1506.