Functional characterization of a novel arachidonic acid 12S-lipoxygenase in the halotolerant bacterium Myxococcus fulvus exhibiting complex social living patterns.
eicosanoids
lipid metabolism
mutagenesis
oxidative stress
social behavior
Journal
MicrobiologyOpen
ISSN: 2045-8827
Titre abrégé: Microbiologyopen
Pays: England
ID NLM: 101588314
Informations de publication
Date de publication:
Jul 2019
Jul 2019
Historique:
revised:
24
10
2018
received:
08
10
2018
accepted:
07
11
2018
pubmed:
19
12
2018
medline:
19
12
2018
entrez:
19
12
2018
Statut:
ppublish
Résumé
Lipoxygenases are lipid peroxidizing enzymes, which frequently occur in higher plants and mammals. These enzymes are also expressed in lower multicellular organisms but here they are not widely distributed. In bacteria, lipoxygenases rarely occur and evaluation of the currently available bacterial genomes suggested that <0.5% of all sequenced bacterial species carry putative lipoxygenase genes. We recently rescreened the public bacterial genome databases for lipoxygenase-like sequences and identified two novel lipoxygenase isoforms (MF-LOX1 and MF-LOX2) in the halotolerant Myxococcus fulvus. Both enzymes share a low degree of amino acid conservation with well-characterized eukaryotic lipoxygenase isoforms but they involve the catalytically essential iron cluster. Here, we cloned the MF-LOX1 cDNA, expressed the corresponding enzyme as N-terminal hexa-his-tag fusion protein, purified the recombinant enzyme to electrophoretic homogeneity, and characterized it with respect to its protein-chemical and enzymatic properties. We found that M. fulvus expresses a catalytically active intracellular lipoxygenase that converts arachidonic acid and other polyunsaturated fatty acids enantioselectively to the corresponding n-9 hydroperoxy derivatives. The enzyme prefers C
Identifiants
pubmed: 30560563
doi: 10.1002/mbo3.775
pmc: PMC6612559
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e00775Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : Ku961-12/1
Organisme : Deutsche Forschungsgemeinschaft
ID : Ku961/11-1
Informations de copyright
© 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Références
Ackermann, J. A., Hofheinz, K., Zaiss, M. M., & Kronke, G. (2017). The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochimica Et Biophysica Acta, 1862, 371-381. https://doi.org/10.1016/j.bbalip.2016.07.014
Aldrovandi, M., Banthiya, S., Meckelmann, S., Zhou, Y., Heydeck, D., O'Donnell, V. B., & Kuhn, H. (2018). Specific oxygenation of plasma membrane phospholipids by Pseudomonas aeruginosa lipoxygenase induces structural and functional alterations in mammalian cells. Biochimica Et Biophysica Acta, 1863, 152-164. https://doi.org/10.1016/j.bbalip.2017.11.005
An, J. U., Hong, S. H., & Oh, D. K. (2018). Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids. Biochimica Et Biophysica Acta, 1863, 823-833. https://doi.org/10.1016/j.bbalip.2018.04.014
Andreou, A., & Feussner, I. (2009). Lipoxygenases - Structure and reaction mechanism. Phytochemistry, 70, 1504-1510. https://doi.org/10.1016/j.phytochem.2009.05.008
Andreou, A., Gobel, C., Hamberg, M., & Feussner, I. (2010a). A bisallylic mini-lipoxygenase from cyanobacterium Cyanothece sp. that has an iron as cofactor. Journal of Biological Chemistry, 285, 14178-14186.
Andreou, A., Göbel, C., Hamberg, M., & Feussner, I. (2010b). A bisallylic mini-lipoxygenase from cyanobacterium Cyanothece sp. that has an iron as cofactor. Journal of Biological Chemistry, 285, 14178-14186.
Anterola, A., Göbel, C., Hornung, E., Sellhorn, G., Feussner, I., & Grimes, H. (2009). Physcomitrella patens has lipoxygenases for both eicosanoid and octadecanoid pathways. Phytochemistry, 70, 40-52. https://doi.org/10.1016/j.phytochem.2008.11.012
Banthiya, S., Kalms, J., Galemou Yoga, E., Ivanov, I., Carpena, X., Hamberg, M., … Scheerer, P. (2016). Structural and functional basis of phospholipid oxygenase activity of bacterial lipoxygenase from Pseudomonas aeruginosa. Biochimica Et Biophysica Acta, 1861, 1681-1692. https://doi.org/10.1016/j.bbalip.2016.08.002
Berra, E., Benizri, E., Ginouv�s, A., Volmat, V., Roux, D., & Pouyss�gur, J. (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. The EMBO Journal, 22(16), 4082-4090.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917. https://doi.org/10.1139/y59-099
Borngraber, S., Browner, M., Gillmor, S., Gerth, C., Anton, M., Fletterick, R., & Kuhn, H. (1999). Shape and specificity in mammalian 15-lipoxygenase active site. The functional interplay of sequence determinants for the reaction specificity. Journal of Biological Chemistry, 274, 37345-37350.
Brash, A. R., Yu, Z., Boeglin, W. E., & Schneider, C. (2007). The hepoxilin connection in the epidermis. FEBS Journal, 274, 3494-3502. https://doi.org/10.1111/j.1742-4658.2007.05909.x
Chen, X. S., Sheller, J. R., Johnson, E. N., & Funk, C. D. (1994). Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature, 372, 179-182.
Choi, J., Chon, J. K., Kim, S., & Shin, W. (2008). Conformational flexibility in mammalian 15S-lipoxygenase: Reinterpretation of the crystallographic data. Proteins, 70, 1023-1032. https://doi.org/10.1002/prot.21590
Coffa, G., & Brash, A. R. (2004). A single active site residue directs oxygenation stereospecificity in lipoxygenases: Stereocontrol is linked to the position of oxygenation. Proceedings of the National Academy of Sciences U S A, 101, 15579-15584. https://doi.org/10.1073/pnas.0406727101
Coffa, G., Schneider, C., & Brash, A. R. (2005). A comprehensive model of positional and stereo control in lipoxygenases. Biochemical and Biophysical Research Communications, 338, 87-92. https://doi.org/10.1016/j.bbrc.2005.07.185
Colakoglu, M., Tuncer, S., & Banerjee, S. (2018). Emerging cellular functions of the lipid metabolizing enzyme 15-lipoxygenase-1. Cell Proliferation, 51, e12472.
Deschamps, J. D., Ogunsola, A. F., Jameson, J. B., 2nd, Yasgar, A., Flitter, B. A., Freedman, C. J., … Jadhav, A. (2016). Biochemical and cellular characterization and inhibitor discovery of Pseudomonas aeruginosa 15-lipoxygenase. Biochemistry, 55, 3329-3340.
Eckl, K. M., de Juanes, S., Kurtenbach, J., Natebus, M., Lugassy, J., Oji, V., … Hennies, H. C. (2009). Molecular analysis of 250 patients with autosomal recessive congenital ichthyosis: Evidence for mutation hotspots in ALOXE3 and allelic heterogeneity in ALOX12B. Journal of Investigative Dermatology, 129, 1421-1428. https://doi.org/10.1038/jid.2008.409
Eek, P., Järving, R., Järving, I., Gilbert, N. C., Newcomer, M. E., & Samel, N. (2012). Structure of a calcium-dependent 11R-lipoxygenase suggests a mechanism for Ca2+ regulation. Journal of Biological Chemistry, 287, 22377-22386.
Egmond, M. R., Brunori, M., & Fasella, P. M. (1976). The steady-state kinetics of the oxygenation of linoleic acid catalysed by soybean lipoxygenase. European Journal of Biochemistry, 61, 93-100. https://doi.org/10.1111/j.1432-1033.1976.tb10001.x
Gao, B., Boeglin, W. E., & Brash, A. R. (2010). Omega-3 fatty acids are oxygenated at the n-7 carbon by the lipoxygenase domain of a fusion protein in the cyanobacterium Acaryochloris marina. Biochimica Et Biophysica Acta, 1801, 58-63. https://doi.org/10.1016/j.bbalip.2009.09.004
Garreta, A., Val-Moraes, S. P., Garcia-Fernandez, Q., Busquets, M., Juan, C., Oliver, A., … Carpena, X. (2013). Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa. FASEB Journal, 27, 4811-4821.
Gilbert, N. C., Bartlett, S. G., Waight, M. T., Neau, D. B., Boeglin, W. E., Brash, A. R., & Newcomer, M. E. (2011). The structure of human 5-lipoxygenase. Science, 331, 217-219. https://doi.org/10.1126/science.1197203
Gillmor, S. A., Villasenor, A., Fletterick, R., Sigal, E., & Browner, M. F. (1997). The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Natural Structural Biology, 4, 1003-1009. https://doi.org/10.1038/nsb1297-1003
Greenway, D. L., & Dyke, K. G. (1979). Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. Journal of General Microbiology, 115, 233-245. https://doi.org/10.1099/00221287-115-1-233
Gupta, P., Sarkar, S., Das, B., Bhattacharjee, S., & Tribedi, P. (2016). Biofilm, pathogenesis and prevention-a journey to break the wall: A review. Archives of Microbiology, 198, 1-15.
Haas, U., Raschperger, E., Hamberg, M., Samuelsson, B., Tryggvason, K., & Haeggstrom, J. Z. (2011). Targeted knock-down of a structurally atypical zebrafish 12S-lipoxygenase leads to severe impairment of embryonic development. Proceedings of the National Academy of Sciences U S A, 108, 20479-20484. https://doi.org/10.1073/pnas.1117094108
Haeggstrom, J. Z., & Funk, C. D. (2011). Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chemical Reviews, 111, 5866-5898.
Hansen, J., Garreta, A., Benincasa, M., Fuste, M. C., Busquets, M., & Manresa, A. (2013). Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Applied Microbiology and Biotechnology, 97, 4737-4747.
Harats, D., Ben-Shushan, D., Cohen, H., Gonen, A., Barshack, I., Goldberg, I., … Shaish, A. (2005). Inhibition of carcinogenesis in transgenic mouse models over-expressing 15-lipoxygenase in the vascular wall under the control of murine preproendothelin-1 promoter. Cancer Letters, 229, 127-134. https://doi.org/10.1016/j.canlet.2005.02.017
Hoffman, L. R., D'Argenio, D. A., MacCoss, M. J., Zhang, Z., Jones, R. A., & Miller, S. I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436, 1171-1175. https://doi.org/10.1038/nature03912
Horn, H., & Lackner, S. (2014). Modeling of biofilm systems: A review. Advances in Biochemical Engineering/Biotechnology, 146, 53-76.
Horn, T., Adel, S., Schumann, R., Sur, S., Kakularam, K. R., Polamarasetty, A., … Heydeck, D. (2015). Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Progress in Lipid Research, 57, 13-39. https://doi.org/10.1016/j.plipres.2014.11.001
Ivanov, I., Heydeck, D., Hofheinz, K., Roffeis, J., O'Donnell, V. B., Kuhn, H., & Walther, M. (2010). Molecular enzymology of lipoxygenases. Archives of Biochemistry and Biophysics, 503, 161-174. https://doi.org/10.1016/j.abb.2010.08.016
Ivanov, I., Kuhn, H., & Heydeck, D. (2015). Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene. https://doi.org/10.1016/j.gene.2015.07.073
Jansen, C., Hofheinz, K., Vogel, R., Roffeis, J., Anton, M., Reddanna, P., … Walther, M. (2011). Stereocontrol of arachidonic acid oxygenation by vertebrate lipoxygenases: Newly cloned zebrafish lipoxygenase 1 does not follow the Ala-versus-Gly concept. Journal of Biological Chemistry, 286, 37804-37812. https://doi.org/10.1074/jbc.M111.259242
Juranek, I., Suzuki, H., & Yamamoto, S. (1999). Affinities of various mammalian arachidonate lipoxygenases and cyclooxygenases for molecular oxygen as substrate. Biochimica Et Biophysica Acta, 1436, 509-518.
Kalms, J., Banthiya, S., Galemou Yoga, E., Hamberg, M., Holzhutter, H. G., Kuhn, H., & Scheerer, P. (2017). The crystal structure of Pseudomonas aeruginosa lipoxygenase Ala420Gly mutant explains the improved oxygen affinity and the altered reaction specificity. Biochimica Et Biophysica Acta, 1862, 463-473.
Karatan, E., & Watnick, P. (2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews, 73, 310-347.
Kim, K. R., An, J. U., Lee, S. H., & Oh, D. K. (2015). Selective production of 9R-hydroxy-10E,12Z,15Z-octadecatrienoic acid from alpha-linolenic acid in Perilla seed oil hydrolyzate by a lipoxygenase from Nostoc sp. SAG 25.82. PLoS ONE, 10, e0137785.
Knapp, M. J., & Klinman, J. P. (2003). Kinetic studies of oxygen reactivity in soybean lipoxygenase-1. Biochemistry, 42, 11466-11475.
Knapp, M. J., Seebeck, F. P., & Klinman, J. P. (2001). Steric control of oxygenation regiochemistry in soybean lipoxygenase-1. Journal of the American Chemical Society, 123, 2931-2932. https://doi.org/10.1021/ja003855k
Krieg, P., & Furstenberger, G. (2014). The role of lipoxygenases in epidermis. Biochimica Et Biophysica Acta, 1841, 390-400.
Kronke, G., Katzenbeisser, J., Uderhardt, S., Zaiss, M. M., Scholtysek, C., Schabbauer, G., … Schett, G. (2009). 12/15-lipoxygenase counteracts inflammation and tissue damage in arthritis. Journal of Immunology, 183, 3383-3389. https://doi.org/10.4049/jimmunol.0900327
Kuhn, H., Banthiya, S., & van Leyen, K. (2015). Mammalian lipoxygenases and their biological relevance. Biochimica Et Biophysica Acta, 1851, 308-330. https://doi.org/10.1016/j.bbalip.2014.10.002
Kuhn, H., Belkner, J., Wiesner, R., & Brash, A. R. (1990). Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. Journal of Biological Chemistry, 265, 18351-18361.
Kühn, H., Barnett, J., Grunberger, D., Baecker, P., Chow, J., Nguyen, B., … Sigal, E. (1993). Overexpression, purification and characterization of human recombinant 15-lipoxygenase. Biochimica Et Biophysica Acta, 1169, 80-89.
Kutzner, L., Goloshchapova, K., Heydeck, D., Stehling, S., Kuhn, H., & Schebb, N. H. (2017). Mammalian ALOX15 orthologs exhibit pronounced dual positional specificity with docosahexaenoic acid. Biochimica Et Biophysica Acta, 1862, 666-675. https://doi.org/10.1016/j.bbalip.2017.04.001
Lu, X., Zhang, J., Liu, S., Zhang, D., Xu, Z., Wu, J., … Chen, J. (2013). Overproduction, purification, and characterization of extracellular lipoxygenase of Pseudomonas aeruginosa in Escherichia coli. Applied Microbiology and Biotechnology, 97, 5793-5800.
Ludwig, P., Holzhutter, H. G., Colosimo, A., Silvestrini, M. C., Schewe, T., & Rapoport, S. M. (1987). A kinetic model for lipoxygenases based on experimental data with the lipoxygenase of reticulocytes. European Journal of Biochemistry, 168, 325-337. https://doi.org/10.1111/j.1432-1033.1987.tb13424.x
Maccarrone, M., Salucci, M. L., van Zadelhoff, G., Malatesta, F., Veldink, G., Vliegenthart, J. F., & Finazzi-Agrò, A. (2001). Tryptic digestion of soybean lipoxygenase-1 generates a 60 kDa fragment with improved activity and membrane binding ability. Biochemistry, 40, 6819-6827.
Minor, W., Steczko, J., Stec, B., Otwinowski, Z., Bolin, J. T., Walter, R., & Axelrod, B. (1996). Crystal structure of soybean lipoxygenase L-1 at 1.4 A resolution. Biochemistry, 35, 10687-10701.
Mortimer, M., Järving, R., Brash, A. R., Samel, N., & Järving, I. (2006). Identification and characterization of an arachidonate 11R-lipoxygenase. Archives of Biochemistry and Biophysics, 445, 147-155. https://doi.org/10.1016/j.abb.2005.10.023
Neau, D. B., Gilbert, N. C., Bartlett, S. G., Boeglin, W., Brash, A. R., & Newcomer, M. E. (2009). The 1.85 A structure of an 8R-lipoxygenase suggests a general model for lipoxygenase product specificity. Biochemistry, 48, 7906-7915.
Newie, J., Andreou, A., Neumann, P., Einsle, O., Feussner, I., & Ficner, R. (2016). Crystal structure of a lipoxygenase from Cyanothece sp. may reveal novel features for substrate acquisition. Journal of Lipid Research, 57, 276-287.
Pekarova, M., Kuhn, H., Bezakova, L., Ufer, C., & Heydeck, D. (2015). Mutagenesis of triad determinants of rat Alox15 alters the specificity of fatty acid and phospholipid oxygenation. Archives of Biochemistry and Biophysics, 571, 50-57.
Qian, H., Xia, B., He, Y., Lu, Z., Bie, X., Zhao, H., … Lu, F. (2017). Expression, purification, and characterization of a novel acidic Lipoxygenase from Myxococcus xanthus. Protein Expression and Purification, 138, 13-17.
Rapoport, S. M., & Schewe, T. (1986). The maturational breakdown of mitochondria in reticulocytes. Biochimica Et Biophysica Acta, 864, 471-495. https://doi.org/10.1016/0304-4157(86)90006-7
Raychowdhury, M. K., Goswami, R., & Chakrabarti, P. (1985). Effect of unsaturated fatty acids in growth inhibition of some penicillin-resistant and sensitive bacteria. Journal of Applied Bacteriology, 59, 183-188. https://doi.org/10.1111/j.1365-2672.1985.tb03319.x
Ryan, A., & Godson, C. (2010). Lipoxins: Regulators of resolution. Current Opinion in Pharmacology, 10, 166-172. https://doi.org/10.1016/j.coph.2010.02.005
Saam, J., Ivanov, I., Walther, M., Holzhutter, H. G., & Kuhn, H. (2007). Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proceedings of the National Academy of Sciences U S A, 104, 13319-13324. https://doi.org/10.1073/pnas.0702401104
Schewe, T., Halangk, W., Hiebsch, C., & Rapoport, S. M. (1975). A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria. FEBS Letters, 60, 149-152. https://doi.org/10.1016/0014-5793(75)80439-X
Serhan, C. N., & Chiang, N. (2013). Resolution phase lipid mediators of inflammation: Agonists of resolution. Current Opinion in Pharmacology, 13, 632-640. https://doi.org/10.1016/j.coph.2013.05.012
Serhan, C. N., Dalli, J., Colas, R. A., Winkler, J. W., & Chiang, N. (2015). Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochimica Et Biophysica Acta, 1851, 397-413. https://doi.org/10.1016/j.bbalip.2014.08.006
Shimahara, K. & Hashixume, Y. (1973). Properties of a lipoxygenase-like enzyme produced by Pseudomonas aeruginosa strain A-4. Journal of Fermentation Technology, 51, 183-189.
Takahashi, Y., Glasgow, W. C., Suzuki, H., Taketani, Y., Yamamoto, S., Anton, M., … Brash, A. R. (1993). Investigation of the oxygenation of phospholipids by the porcine leukocyte and human platelet arachidonate 12-lipoxygenases. European Journal of Biochemistry, 218, 165-171. https://doi.org/10.1111/j.1432-1033.1993.tb18362.x
van Leyen, K., Duvoisin, R. M., Engelhardt, H., & Wiedmann, M. (1998). A function for lipoxygenase in programmed organelle degradation. Nature, 395, 392-395. https://doi.org/10.1038/26500
Vance, R. E., Hong, S., Gronert, K., Serhan, C. N., & Mekalanos, J. J. (2004). The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proceedings of the National Academy of Sciences U S A, 101, 2135-2139.
Velicer, G. J., Kroos, L., & Lenski, R. E. (1998). Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proceedings of the National Academy of Sciences U S A, 95, 12376-12380. https://doi.org/10.1073/pnas.95.21.12376
Vidal-Mas, J., Busquets, M., & Manresa, A. (2005). Cloning and expression of a lipoxygenase from Pseudomonas aeruginosa 42A2. Antonie Van Leeuwenhoek, 87, 245-251. https://doi.org/10.1007/s10482-004-4021-1
Vogel, R., Jansen, C., Roffeis, J., Reddanna, P., Forsell, P., Claesson, H. E., … Walther, M. (2010). Applicability of the triad concept for the positional specificity of mammalian lipoxygenases. Journal of Biological Chemistry, 285, 5369-5376. https://doi.org/10.1074/jbc.M109.057802
Volkov, A., Liavonchanka, A., Kamneva, O., Fiedler, T., Goebel, C., Kreikemeyer, B., & Feussner, I. (2010). Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. Journal of Biological Chemistry, 285, 10353-10361.
Welch, R., & Kaiser, D. (2001). Cell behavior in traveling wave patterns of myxobacteria. Proceedings of the National Academy of Sciences U S A, 98, 14907-14912. https://doi.org/10.1073/pnas.261574598
Wennman, A., Karkehabadi, S., & Oliw, E. H. (2014). Kinetic investigation of the rate-limiting step of manganese- and iron-lipoxygenases. Archives of Biochemistry and Biophysics, 555-556, 9-15. https://doi.org/10.1016/j.abb.2014.05.014
Xu, S., Mueser, T. C., Marnett, L. J., & Funk, M. O., Jr. (2012). Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure, 20, 1490-1497. https://doi.org/10.1016/j.str.2012.06.003
Yuan, D., Zou, Q., Yu, T., Song, C., Huang, S., Chen, S., … Xu, A. (2014). Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. Biochimica Et Biophysica Acta, 1841, 1272-1284. https://doi.org/10.1016/j.bbalip.2014.04.009
Zheng, Y., Boeglin, W. E., Schneider, C., & Brash, A. R. (2008). A 49-kDa mini-lipoxygenase from Anabaena sp. PCC 7120 retains catalytically complete functionality. Journal of Biological Chemistry, 283, 5138-5147.