Exact limits of inference in coalescent models.


Journal

Theoretical population biology
ISSN: 1096-0325
Titre abrégé: Theor Popul Biol
Pays: United States
ID NLM: 0256422

Informations de publication

Date de publication:
02 2019
Historique:
received: 11 02 2018
revised: 12 11 2018
accepted: 27 11 2018
pubmed: 21 12 2018
medline: 23 5 2019
entrez: 21 12 2018
Statut: ppublish

Résumé

Recovery of population size history from molecular sequence data is an important problem in population genetics. Inference commonly relies on a coalescent model linking the population size history to genealogies. The high computational cost of estimating parameters from these models usually compels researchers to select a subset of the available data or to rely on insufficient summary statistics for statistical inference. We consider the problem of recovering the true population size history from two possible alternatives on the basis of coalescent time data previously considered by Kim et al. (2015). We improve upon previous results by giving exact expressions for the probability of correctly distinguishing between the two hypotheses as a function of the separation between the alternative size histories, the number of individuals, loci, and the sampling times. In more complicated settings we estimate the exact probability of correct recovery by Monte Carlo simulation. Our results give considerably more pessimistic inferential limits than those previously reported. We also extended our analyses to pairwise SMC and SMC' models of recombination. This work is relevant for optimal design when the inference goal is to test scientific hypotheses about population size trajectories in coalescent models with and without recombination.

Identifiants

pubmed: 30571959
pii: S0040-5809(18)30024-8
doi: 10.1016/j.tpb.2018.11.004
pmc: PMC6541399
mid: NIHMS1030110
pii:
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

75-93

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM131404
Pays : United States

Informations de copyright

Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

Références

Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4563-8
pubmed: 11287657
Science. 2004 Nov 26;306(5701):1561-5
pubmed: 15567864
Philos Trans R Soc Lond B Biol Sci. 2005 Jul 29;360(1459):1387-93
pubmed: 16048782
Mol Biol Evol. 2006 Mar;23(3):691-700
pubmed: 16364968
BMC Genet. 2006 Mar 15;7:16
pubmed: 16539698
Genetics. 1991 Oct;129(2):555-62
pubmed: 1743491
Theor Popul Biol. 2008 May;73(3):342-8
pubmed: 18321552
Genetics. 2009 Jan;181(1):341-5
pubmed: 19001293
Bull Math Biol. 2011 Apr;73(4):829-72
pubmed: 21181503
Nature. 2011 Jul 13;475(7357):493-6
pubmed: 21753753
Mol Biol Evol. 2012 Aug;29(8):1969-73
pubmed: 22367748
Genetics. 2013 Jul;194(3):647-62
pubmed: 23608192
Nat Genet. 2014 Aug;46(8):919-25
pubmed: 24952747
Virology. 2014 Sep;464-465:233-243
pubmed: 25105489
Theor Popul Biol. 2014 Nov;97:35-48
pubmed: 25149691
Theor Popul Biol. 2014 Dec 11;100C:26-38
pubmed: 25498195
Nature. 2015 Aug 6;524(7563):93-6
pubmed: 25970247
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7677-82
pubmed: 26056264
Genetics. 2015 Sep;201(1):281-304
pubmed: 26224734
Nature. 2016 May 02;534(7606):200-5
pubmed: 27135931
Genetics. 2016 Nov;204(3):1191-1206
pubmed: 27638421
Curr Opin Genet Dev. 2016 Dec;41:130-139
pubmed: 27710906
Nat Genet. 2017 Feb;49(2):303-309
pubmed: 28024154
Genetics. 1995 Aug;140(4):1421-30
pubmed: 7498781
Philos Trans R Soc Lond B Biol Sci. 1994 Jun 29;344(1310):403-10
pubmed: 7800710
Genetics. 1993 Mar;133(3):693-709
pubmed: 8454210
Genetics. 1996 Nov;144(3):1247-62
pubmed: 8913765

Auteurs

James E Johndrow (JE)

390 Serra Mall, Stanford, CA 94305, USA. Electronic address: johndrow@stanford.edu.

Julia A Palacios (JA)

390 Serra Mall, Stanford, CA 94305, USA. Electronic address: juliapr@stanford.edu.

Articles similaires

Eimeria tenella Animals Antigens, Protozoan Chickens Genetic Variation
Humans Immunization, Secondary COVID-19 Vaccines COVID-19 SARS-CoV-2

Classifications MeSH