Insights into genomic sequence diversity of the SAG surface antigen superfamily in geographically diverse Eimeria tenella isolates.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
01 Nov 2024
Historique:
received: 12 08 2024
accepted: 23 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Eimeria tenella is among the protozoan parasites that cause the infectious disease coccidiosis in chickens, incurring huge economic losses to the global poultry industry. Surface antigens (EtSAGs) involved in host-parasite interaction are potential targets for control strategies. However, the occurrence of genetic diversity for EtSAGs in field populations is unknown, as is the risk of such diversity to the efficacy of EtSAG-based control approaches. Here, the extent of EtSAG genetic diversity and its implications on protein structure and function is assessed. Eighty-seven full-length EtSAG genomic sequences were identified from E. tenella genome assemblies of isolates sampled from continents including North America (United States), Europe (United Kingdom), Asia (Malaysia and Japan) and Africa (Nigeria). Limited diversity was observed in the EtSAG sequences. However, distinctive patterns of polymorphism were identified between EtSAG subfamilies, suggesting functional differences among these antigen families. Polymorphisms were sparsely distributed across isolates, with a small number of variants exclusive to specific geographical regions. These findings enhance our understanding of EtSAGs, particularly in elucidating functional differences among the antigens that could inform the development of more effective and long-lasting anticoccidial control strategies.

Identifiants

pubmed: 39482455
doi: 10.1038/s41598-024-77580-7
pii: 10.1038/s41598-024-77580-7
doi:

Substances chimiques

Antigens, Protozoan 0
Antigens, Surface 0
Protozoan Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26251

Subventions

Organisme : Research University Grant from Universiti Kebangsaan Malaysia
ID : GUP-2019-036
Organisme : Research University Grant from Universiti Kebangsaan Malaysia
ID : GUP-2019-036

Informations de copyright

© 2024. The Author(s).

Références

O’Neill, B. C. et al. Global demographic trends and future carbon emissions. Proc. Natl. Acad. Sci. U S A. 107, 17521–17526 (2010).
pubmed: 20937861 pmcid: 2955139 doi: 10.1073/pnas.1004581107
Smil, V. Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins. Enzyme Microb. Technol. 30, 305–311 (2002).
doi: 10.1016/S0141-0229(01)00504-X
Augustine, P. C. Cell: sporozoite interactions and invasion by apicomplexan parasites of the genus Eimeria. Int. J. Parasitol. 31, 1–8 (2001).
pubmed: 11286188 doi: 10.1016/S0020-7519(00)00150-8
Antonissen, G. et al. Microbial shifts associated with necrotic enteritis. Avian Pathol. 45, 308–312 (2016).
pubmed: 26950294 doi: 10.1080/03079457.2016.1152625
Blake, D. P. et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 51, 115 (2020).
pubmed: 32928271 pmcid: 7488756 doi: 10.1186/s13567-020-00837-2
Chapman, H. D. Biochemical, genetic and applied aspects of drug resistance in Eimeria parasites of the fowl. Avian Pathol. 26, 221–244 (1997).
pubmed: 18483904 doi: 10.1080/03079459708419208
Kant, V. et al. Anticoccidial drugs used in the poultry: an overview. Sci. Int. 1, 261–265 (2013).
doi: 10.17311/sciintl.2013.261.265
Lee, X. W., Lam, S. D., Firdaus-Raih, M. & Wan, K. L. Molecular characterisation of Eimeria tenella porin, a potential anticoccidial drug target. Sains Malays. 49, 755–764 (2020).
doi: 10.17576/jsm-2020-4904-04
Noack, S., Chapman, H. D. & Selzer, P. M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 118, 2009–2026 (2019).
pubmed: 31152233 pmcid: 6611755 doi: 10.1007/s00436-019-06343-5
Squadrone, S., Mauro, C., Ferro, G. L., Amato, G. & Abete, M. C. Determination of amprolium in feed by a liquid chromatography-mass spectrometry method. J. Pharm. Biomed. Anal. 48, 1457–1461 (2008).
pubmed: 18977627 doi: 10.1016/j.jpba.2008.09.024
Blake, D. P. & Tomley, F. M. Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol. 30, 12–19 (2014).
pubmed: 24238797 doi: 10.1016/j.pt.2013.10.003
Soutter, F., Werling, D., Tomley, F. M. & Blake, D. P. Poultry coccidiosis: design and interpretation of vaccine studies. Front. Vet. Sci. 7, 101 (2020).
pubmed: 32175341 pmcid: 7054285 doi: 10.3389/fvets.2020.00101
Blake, D. P., Pastor-Fernández, I., Nolan, M. J. & Tomley, F. M. Recombinant anticoccidial vaccines – a cup half full? Infect. Genet. Evol. 55, 358–365 (2017).
pubmed: 29017798 doi: 10.1016/j.meegid.2017.10.009
Shirley, M. W., Smith, A. L. & Tomley, F. M. The biology of avian Eimeria with an emphasis on their control by vaccination. Adv. Parasitol. 60, 285–330 (2005).
pubmed: 16230106 doi: 10.1016/S0065-308X(05)60005-X
Blake, D. P. et al. Genetic and biological characterisation of three cryptic Eimeria operational taxonomic units that infect chickens (Gallus gallus domesticus). Int. J. Parasitol. 51, 621–634 (2021).
pubmed: 33713650 pmcid: 8186487 doi: 10.1016/j.ijpara.2020.12.004
Clark, E. L. et al. Cryptic Eimeria genotypes are common across the southern but not northern hemisphere. Int. J. Parasitol. 46, 537–544 (2016).
pubmed: 27368611 pmcid: 4978698 doi: 10.1016/j.ijpara.2016.05.006
Tabarés, E. et al. Eimeria tenella sporozoites and merozoites differentially express glycosylphosphatidylinositol-anchored variant surface proteins. Mol. Biochem. Parasitol. 135, 123–132 (2004).
pubmed: 15287593 doi: 10.1016/j.molbiopara.2004.01.013
Reid, A. J. et al. Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Res. 24, 1676–1685 (2014).
pubmed: 25015382 pmcid: 4199364 doi: 10.1101/gr.168955.113
Chow, Y. P., Wan, K. L., Blake, D. P., Tomley, F. & Nathan, S. Immunogenic Eimeria tenella glycosylphosphatidylinositol-anchored surface antigens (SAGs) induce inflammatory responses in avian macrophages. PloS One 6, e25233 (2011).
pubmed: 21980402 pmcid: 3182191 doi: 10.1371/journal.pone.0025233
Jahn, D. et al. Model structure of the immunodominant surface antigen of Eimeria tenella identified as a target for sporozoite-neutralizing monoclonal antibody. Parasitol. Res. 105, 655–668 (2009).
pubmed: 19387686 doi: 10.1007/s00436-009-1437-6
Ho, S. K., Singh, M., Nathan, S. & Wan, K. L. Immunisation of Eimeria tenella SAG2 recombinant protein protects chickens against the effects of coccidiosis. Sains Malays. 49, 971–978 (2020).
doi: 10.17576/jsm-2020-4905-01
Arnott, A. et al. Distinct patterns of diversity, population structure and evolution in the AMA1 genes of sympatric Plasmodium falciparum and Plasmodium vivax populations of Papua New Guinea from an area of similarly high transmission. Malar. J. 13, 1–16 (2014).
doi: 10.1186/1475-2875-13-233
Takala, S. L. & Plowe, C. V. Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming ‘vaccine resistant malaria’. Parasite Immunol. 31, 560–573 (2009).
pubmed: 19691559 pmcid: 2730200 doi: 10.1111/j.1365-3024.2009.01138.x
Blake, D. P. et al. Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development. Proc. Natl. Acad. Sci. U.S.A. 112, E5343–E5350 (2015).
pubmed: 26354122 pmcid: 4586875 doi: 10.1073/pnas.1506468112
Fitz-Coy, S. H. Antigenic variation among strains of Eimeria maxima and E. tenella of the chicken. Avian Dis. 36, 40–43 (1992).
pubmed: 1567308 doi: 10.2307/1591712
Abu-Akkada, S. S. & Awad, A. M. Isolation, propagation, identification and comparative pathogenicity of five Egyptian field strains of Eimeria tenella from broiler chickens in five different provinces in Egypt. Res. Vet. Sci. 92, 92–95 (2012).
pubmed: 21134686 doi: 10.1016/j.rvsc.2010.10.023
Awad, A. M., El-Nahas, A. F. & Abu-Akkada, S. S. Evaluation of the protective efficacy of the anticoccidial vaccine Coccivac-B in broilers, when challenged with Egyptian field isolates of E. tenella. Parasitol. Res. 112, 113–121 (2013).
pubmed: 23001507 doi: 10.1007/s00436-012-3112-6
Tan, L. et al. Genetic diversity and drug sensitivity studies on Eimeria tenella field isolates from Hubei Province of China. Parasit. Vectors. 10, 1–10 (2017).
doi: 10.1186/s13071-017-2067-y
Võ, T. C. et al. Genetic diversity of microneme protein 2 and surface antigen 1 of Eimeria tenella. Genes. 12, 1418 (2021).
pubmed: 34573400 pmcid: 8470435 doi: 10.3390/genes12091418
McDougald, L. R. & Jeffers, T. K. Eimeria tenella (sporozoa, coccidia): gametogony following a single asexual generation. Science. 192, 258–259 (1976).
pubmed: 1257765 doi: 10.1126/science.1257765
Loo, S. S., Mohamed, M., Mohd-Taib, F. S., Khoo, C. K. & Wan, K. L. Isolation and establishment of Eimeria tenella populations from local broiler chicken farms. Sains Malays. 51, 1677–1686 (2022).
doi: 10.17576/jsm-2022-5106-06
Loo, S. S., Mohd-Taib, F. S., Khoo, C. K. & Wan, K. L. Characterization of internal transcribed spacer-1 and apical membrane antigen-1 sequences provides insights into the genetic diversity of Eimeria tenella strains. Trop. Biomed. 39, 476–482 (2022).
pubmed: 36214447 doi: 10.47665/tb.39.3.020
Joshi, N. A. & Fass, J. N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files. (GitHub, 2011). https://github.com/najoshi/sickle .
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv (2013). https://arxiv.org/abs/1303.3997
Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience. 10, giab008 (2021).
pubmed: 33590861 pmcid: 7931819 doi: 10.1093/gigascience/giab008
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 27, 2987–2993 (2021).
doi: 10.1093/bioinformatics/btr509
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31, 3210–3212 (2015).
pubmed: 26059717 doi: 10.1093/bioinformatics/btv351
Slater, G. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 6, 31 (2005).
doi: 10.1186/1471-2105-6-31
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 6, 80–92 (2012).
pubmed: 22728672 pmcid: 3679285 doi: 10.4161/fly.19695
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
pubmed: 29029172 doi: 10.1093/molbev/msx248
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
pubmed: 24132122 pmcid: 3840312 doi: 10.1093/molbev/mst197
Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).
pubmed: 3444411
Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 123, 585–595 (1989).
pubmed: 2513255 pmcid: 1203831 doi: 10.1093/genetics/123.3.585
Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics. 133, 693–709 (1993).
pubmed: 8454210 pmcid: 1205353 doi: 10.1093/genetics/133.3.693
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature. 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods. 19, 679–682 (2022).
pubmed: 35637307 pmcid: 9184281 doi: 10.1038/s41592-022-01488-1
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101 doi: 10.1002/pro.3943
Belfield, E. J. et al. DNA mismatch repair preferentially protects genes from mutation. Genome Res. 28, 66–74 (2018).
pubmed: 29233924 pmcid: 5749183 doi: 10.1101/gr.219303.116
Frigola, J. et al. Reduced mutation rate in exons due to differential mismatch repair. Nat. Genet. 49, 1684–1692 (2017).
pubmed: 29106418 pmcid: 5712219 doi: 10.1038/ng.3991
Loo, S. S., Blake, D. P., Mohd-Adnan, A., Mohamed, R. & Wan, K. L. Eimeria tenella glucose-6-phosphate isomerase: molecular characterization and assessment as a target for anti-coccidial control. Parasitology. 137, 1169–1177 (2010).
pubmed: 20233491 doi: 10.1017/S0031182010000119
López-Osorio, S., Chaparro-Gutiérrez, J. J. & Gómez-Osorio, L. M. Overview of poultry Eimeria life cycle and host-parasite interactions. Front. Vet. Sci. 7, 384 (2020).
pubmed: 32714951 pmcid: 7351014 doi: 10.3389/fvets.2020.00384
Bondos, S. E., Dunker, A. K. & Uversky, V. N. intrinsically disordered proteins play diverse roles in cell signaling. Cell. Commun. Signal. 20, 20 (2022).
pubmed: 35177069 pmcid: 8851865 doi: 10.1186/s12964-022-00821-7
Hatsuzawa, K., Tagaya, M. & Mizushima, S. The hydrophobic region of signal peptides is a determinant for SRP recognition and protein translocation across the ER membrane. J. Biochem. 121, 270–277 (1997).
pubmed: 9089400 doi: 10.1093/oxfordjournals.jbchem.a021583
He, X. L., Grigg, M. E., Boothroyd, J. C. & Garcia, K. C. Structure of the immunodominant surface antigen from the Toxoplasma gondii SRS superfamily. Nat. Struct. Biol. 9, 606–611 (2002).
pubmed: 12091874
Ramly, N. Z. et al. The structure of a major surface antigen SAG19 from Eimeria tenella unifies the Eimeria SAG family. Commun. Biol. 4, 376 (2021).
pubmed: 33742128 pmcid: 7979774 doi: 10.1038/s42003-021-01904-w

Auteurs

Alice Li-Wen Kiang (AL)

Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia.

Shu-San Loo (SS)

School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor DE, Malaysia.

Mohd-Noor Mat-Isa (MN)

Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia.
Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor DE, Malaysia.

Chyan-Leong Ng (CL)

Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia.

Damer P Blake (DP)

Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, Hertfordshire, AL9 7TA, UK.

Kiew-Lian Wan (KL)

Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia. klwan@ukm.edu.my.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH