Insights into genomic sequence diversity of the SAG surface antigen superfamily in geographically diverse Eimeria tenella isolates.
Avian disease
Coccidiosis
Natural selection
Single nucleotide polymorphism
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
12
08
2024
accepted:
23
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Eimeria tenella is among the protozoan parasites that cause the infectious disease coccidiosis in chickens, incurring huge economic losses to the global poultry industry. Surface antigens (EtSAGs) involved in host-parasite interaction are potential targets for control strategies. However, the occurrence of genetic diversity for EtSAGs in field populations is unknown, as is the risk of such diversity to the efficacy of EtSAG-based control approaches. Here, the extent of EtSAG genetic diversity and its implications on protein structure and function is assessed. Eighty-seven full-length EtSAG genomic sequences were identified from E. tenella genome assemblies of isolates sampled from continents including North America (United States), Europe (United Kingdom), Asia (Malaysia and Japan) and Africa (Nigeria). Limited diversity was observed in the EtSAG sequences. However, distinctive patterns of polymorphism were identified between EtSAG subfamilies, suggesting functional differences among these antigen families. Polymorphisms were sparsely distributed across isolates, with a small number of variants exclusive to specific geographical regions. These findings enhance our understanding of EtSAGs, particularly in elucidating functional differences among the antigens that could inform the development of more effective and long-lasting anticoccidial control strategies.
Identifiants
pubmed: 39482455
doi: 10.1038/s41598-024-77580-7
pii: 10.1038/s41598-024-77580-7
doi:
Substances chimiques
Antigens, Protozoan
0
Antigens, Surface
0
Protozoan Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26251Subventions
Organisme : Research University Grant from Universiti Kebangsaan Malaysia
ID : GUP-2019-036
Organisme : Research University Grant from Universiti Kebangsaan Malaysia
ID : GUP-2019-036
Informations de copyright
© 2024. The Author(s).
Références
O’Neill, B. C. et al. Global demographic trends and future carbon emissions. Proc. Natl. Acad. Sci. U S A. 107, 17521–17526 (2010).
pubmed: 20937861
pmcid: 2955139
doi: 10.1073/pnas.1004581107
Smil, V. Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins. Enzyme Microb. Technol. 30, 305–311 (2002).
doi: 10.1016/S0141-0229(01)00504-X
Augustine, P. C. Cell: sporozoite interactions and invasion by apicomplexan parasites of the genus Eimeria. Int. J. Parasitol. 31, 1–8 (2001).
pubmed: 11286188
doi: 10.1016/S0020-7519(00)00150-8
Antonissen, G. et al. Microbial shifts associated with necrotic enteritis. Avian Pathol. 45, 308–312 (2016).
pubmed: 26950294
doi: 10.1080/03079457.2016.1152625
Blake, D. P. et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 51, 115 (2020).
pubmed: 32928271
pmcid: 7488756
doi: 10.1186/s13567-020-00837-2
Chapman, H. D. Biochemical, genetic and applied aspects of drug resistance in Eimeria parasites of the fowl. Avian Pathol. 26, 221–244 (1997).
pubmed: 18483904
doi: 10.1080/03079459708419208
Kant, V. et al. Anticoccidial drugs used in the poultry: an overview. Sci. Int. 1, 261–265 (2013).
doi: 10.17311/sciintl.2013.261.265
Lee, X. W., Lam, S. D., Firdaus-Raih, M. & Wan, K. L. Molecular characterisation of Eimeria tenella porin, a potential anticoccidial drug target. Sains Malays. 49, 755–764 (2020).
doi: 10.17576/jsm-2020-4904-04
Noack, S., Chapman, H. D. & Selzer, P. M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 118, 2009–2026 (2019).
pubmed: 31152233
pmcid: 6611755
doi: 10.1007/s00436-019-06343-5
Squadrone, S., Mauro, C., Ferro, G. L., Amato, G. & Abete, M. C. Determination of amprolium in feed by a liquid chromatography-mass spectrometry method. J. Pharm. Biomed. Anal. 48, 1457–1461 (2008).
pubmed: 18977627
doi: 10.1016/j.jpba.2008.09.024
Blake, D. P. & Tomley, F. M. Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol. 30, 12–19 (2014).
pubmed: 24238797
doi: 10.1016/j.pt.2013.10.003
Soutter, F., Werling, D., Tomley, F. M. & Blake, D. P. Poultry coccidiosis: design and interpretation of vaccine studies. Front. Vet. Sci. 7, 101 (2020).
pubmed: 32175341
pmcid: 7054285
doi: 10.3389/fvets.2020.00101
Blake, D. P., Pastor-Fernández, I., Nolan, M. J. & Tomley, F. M. Recombinant anticoccidial vaccines – a cup half full? Infect. Genet. Evol. 55, 358–365 (2017).
pubmed: 29017798
doi: 10.1016/j.meegid.2017.10.009
Shirley, M. W., Smith, A. L. & Tomley, F. M. The biology of avian Eimeria with an emphasis on their control by vaccination. Adv. Parasitol. 60, 285–330 (2005).
pubmed: 16230106
doi: 10.1016/S0065-308X(05)60005-X
Blake, D. P. et al. Genetic and biological characterisation of three cryptic Eimeria operational taxonomic units that infect chickens (Gallus gallus domesticus). Int. J. Parasitol. 51, 621–634 (2021).
pubmed: 33713650
pmcid: 8186487
doi: 10.1016/j.ijpara.2020.12.004
Clark, E. L. et al. Cryptic Eimeria genotypes are common across the southern but not northern hemisphere. Int. J. Parasitol. 46, 537–544 (2016).
pubmed: 27368611
pmcid: 4978698
doi: 10.1016/j.ijpara.2016.05.006
Tabarés, E. et al. Eimeria tenella sporozoites and merozoites differentially express glycosylphosphatidylinositol-anchored variant surface proteins. Mol. Biochem. Parasitol. 135, 123–132 (2004).
pubmed: 15287593
doi: 10.1016/j.molbiopara.2004.01.013
Reid, A. J. et al. Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Res. 24, 1676–1685 (2014).
pubmed: 25015382
pmcid: 4199364
doi: 10.1101/gr.168955.113
Chow, Y. P., Wan, K. L., Blake, D. P., Tomley, F. & Nathan, S. Immunogenic Eimeria tenella glycosylphosphatidylinositol-anchored surface antigens (SAGs) induce inflammatory responses in avian macrophages. PloS One 6, e25233 (2011).
pubmed: 21980402
pmcid: 3182191
doi: 10.1371/journal.pone.0025233
Jahn, D. et al. Model structure of the immunodominant surface antigen of Eimeria tenella identified as a target for sporozoite-neutralizing monoclonal antibody. Parasitol. Res. 105, 655–668 (2009).
pubmed: 19387686
doi: 10.1007/s00436-009-1437-6
Ho, S. K., Singh, M., Nathan, S. & Wan, K. L. Immunisation of Eimeria tenella SAG2 recombinant protein protects chickens against the effects of coccidiosis. Sains Malays. 49, 971–978 (2020).
doi: 10.17576/jsm-2020-4905-01
Arnott, A. et al. Distinct patterns of diversity, population structure and evolution in the AMA1 genes of sympatric Plasmodium falciparum and Plasmodium vivax populations of Papua New Guinea from an area of similarly high transmission. Malar. J. 13, 1–16 (2014).
doi: 10.1186/1475-2875-13-233
Takala, S. L. & Plowe, C. V. Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming ‘vaccine resistant malaria’. Parasite Immunol. 31, 560–573 (2009).
pubmed: 19691559
pmcid: 2730200
doi: 10.1111/j.1365-3024.2009.01138.x
Blake, D. P. et al. Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development. Proc. Natl. Acad. Sci. U.S.A. 112, E5343–E5350 (2015).
pubmed: 26354122
pmcid: 4586875
doi: 10.1073/pnas.1506468112
Fitz-Coy, S. H. Antigenic variation among strains of Eimeria maxima and E. tenella of the chicken. Avian Dis. 36, 40–43 (1992).
pubmed: 1567308
doi: 10.2307/1591712
Abu-Akkada, S. S. & Awad, A. M. Isolation, propagation, identification and comparative pathogenicity of five Egyptian field strains of Eimeria tenella from broiler chickens in five different provinces in Egypt. Res. Vet. Sci. 92, 92–95 (2012).
pubmed: 21134686
doi: 10.1016/j.rvsc.2010.10.023
Awad, A. M., El-Nahas, A. F. & Abu-Akkada, S. S. Evaluation of the protective efficacy of the anticoccidial vaccine Coccivac-B in broilers, when challenged with Egyptian field isolates of E. tenella. Parasitol. Res. 112, 113–121 (2013).
pubmed: 23001507
doi: 10.1007/s00436-012-3112-6
Tan, L. et al. Genetic diversity and drug sensitivity studies on Eimeria tenella field isolates from Hubei Province of China. Parasit. Vectors. 10, 1–10 (2017).
doi: 10.1186/s13071-017-2067-y
Võ, T. C. et al. Genetic diversity of microneme protein 2 and surface antigen 1 of Eimeria tenella. Genes. 12, 1418 (2021).
pubmed: 34573400
pmcid: 8470435
doi: 10.3390/genes12091418
McDougald, L. R. & Jeffers, T. K. Eimeria tenella (sporozoa, coccidia): gametogony following a single asexual generation. Science. 192, 258–259 (1976).
pubmed: 1257765
doi: 10.1126/science.1257765
Loo, S. S., Mohamed, M., Mohd-Taib, F. S., Khoo, C. K. & Wan, K. L. Isolation and establishment of Eimeria tenella populations from local broiler chicken farms. Sains Malays. 51, 1677–1686 (2022).
doi: 10.17576/jsm-2022-5106-06
Loo, S. S., Mohd-Taib, F. S., Khoo, C. K. & Wan, K. L. Characterization of internal transcribed spacer-1 and apical membrane antigen-1 sequences provides insights into the genetic diversity of Eimeria tenella strains. Trop. Biomed. 39, 476–482 (2022).
pubmed: 36214447
doi: 10.47665/tb.39.3.020
Joshi, N. A. & Fass, J. N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files. (GitHub, 2011). https://github.com/najoshi/sickle .
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv (2013). https://arxiv.org/abs/1303.3997
Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience. 10, giab008 (2021).
pubmed: 33590861
pmcid: 7931819
doi: 10.1093/gigascience/giab008
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 27, 2987–2993 (2021).
doi: 10.1093/bioinformatics/btr509
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31, 3210–3212 (2015).
pubmed: 26059717
doi: 10.1093/bioinformatics/btv351
Slater, G. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 6, 31 (2005).
doi: 10.1186/1471-2105-6-31
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 6, 80–92 (2012).
pubmed: 22728672
pmcid: 3679285
doi: 10.4161/fly.19695
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
pubmed: 29029172
doi: 10.1093/molbev/msx248
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
pubmed: 24132122
pmcid: 3840312
doi: 10.1093/molbev/mst197
Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).
pubmed: 3444411
Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 123, 585–595 (1989).
pubmed: 2513255
pmcid: 1203831
doi: 10.1093/genetics/123.3.585
Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics. 133, 693–709 (1993).
pubmed: 8454210
pmcid: 1205353
doi: 10.1093/genetics/133.3.693
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature. 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods. 19, 679–682 (2022).
pubmed: 35637307
pmcid: 9184281
doi: 10.1038/s41592-022-01488-1
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943
Belfield, E. J. et al. DNA mismatch repair preferentially protects genes from mutation. Genome Res. 28, 66–74 (2018).
pubmed: 29233924
pmcid: 5749183
doi: 10.1101/gr.219303.116
Frigola, J. et al. Reduced mutation rate in exons due to differential mismatch repair. Nat. Genet. 49, 1684–1692 (2017).
pubmed: 29106418
pmcid: 5712219
doi: 10.1038/ng.3991
Loo, S. S., Blake, D. P., Mohd-Adnan, A., Mohamed, R. & Wan, K. L. Eimeria tenella glucose-6-phosphate isomerase: molecular characterization and assessment as a target for anti-coccidial control. Parasitology. 137, 1169–1177 (2010).
pubmed: 20233491
doi: 10.1017/S0031182010000119
López-Osorio, S., Chaparro-Gutiérrez, J. J. & Gómez-Osorio, L. M. Overview of poultry Eimeria life cycle and host-parasite interactions. Front. Vet. Sci. 7, 384 (2020).
pubmed: 32714951
pmcid: 7351014
doi: 10.3389/fvets.2020.00384
Bondos, S. E., Dunker, A. K. & Uversky, V. N. intrinsically disordered proteins play diverse roles in cell signaling. Cell. Commun. Signal. 20, 20 (2022).
pubmed: 35177069
pmcid: 8851865
doi: 10.1186/s12964-022-00821-7
Hatsuzawa, K., Tagaya, M. & Mizushima, S. The hydrophobic region of signal peptides is a determinant for SRP recognition and protein translocation across the ER membrane. J. Biochem. 121, 270–277 (1997).
pubmed: 9089400
doi: 10.1093/oxfordjournals.jbchem.a021583
He, X. L., Grigg, M. E., Boothroyd, J. C. & Garcia, K. C. Structure of the immunodominant surface antigen from the Toxoplasma gondii SRS superfamily. Nat. Struct. Biol. 9, 606–611 (2002).
pubmed: 12091874
Ramly, N. Z. et al. The structure of a major surface antigen SAG19 from Eimeria tenella unifies the Eimeria SAG family. Commun. Biol. 4, 376 (2021).
pubmed: 33742128
pmcid: 7979774
doi: 10.1038/s42003-021-01904-w