Toward reducing biomaterial antigenic potential: a miniaturized Fc-binding domain for local deposition of antibodies.
Amino Acid Sequence
Animals
Epitopes, T-Lymphocyte
/ immunology
Female
Fluorescent Dyes
/ chemistry
Histocompatibility Antigens Class I
/ chemistry
Histocompatibility Antigens Class II
/ chemistry
Immunoglobulin G
/ chemistry
Interleukin-6
/ analysis
Mice
Mice, Inbred C57BL
Peptides
/ chemistry
Protein Binding
Sequence Alignment
Spleen
/ cytology
Staphylococcal Protein A
/ metabolism
Tumor Necrosis Factor-alpha
/ analysis
Journal
Biomaterials science
ISSN: 2047-4849
Titre abrégé: Biomater Sci
Pays: England
ID NLM: 101593571
Informations de publication
Date de publication:
26 Feb 2019
26 Feb 2019
Historique:
pubmed:
24
12
2018
medline:
15
6
2019
entrez:
22
12
2018
Statut:
ppublish
Résumé
A peptide derived from staphylococcal protein A (SpA) was developed as an affinity module for antibody delivery applications. The miniaturized protein consists of the first helix of the engineered SpA Z domain fused with the self-assembling peptide (SAP) AEAEAKAKAEAEAKAK, or EAK. The resulting peptide, named Z15_EAK, was shown to possess fibrillization properties and an Fc-binding function. The peptide induced a red shift in the Congo red absorbance characteristic of peptide fibrils, also evidenced in transmission electron microscopy images. The one-site binding affinity (Kd) of a gel-like coacervate generated by admixing Z15_EAK with EAK for IgG was determined to be 1.27 ± 0.14 μM based on a microplate-based titration assay. The coacervate was found to localize IgG subcutaneously in mouse footpads for 8 to 28 days. A set of in vivo data was fit to a one-compartment model for simulating the relative fractions of IgG dissociated from the materials in the depot. The model predicted that close to 27% of the antibodies injected were available unbound for the duration of the experiment. Z15_EAK did not appear to induce innate immune responses; injecting Z15_EAK into mouse footpads elicited neither interleukin-6 (IL-6) nor tumor necrosis factor-alpha (TNF-α) from splenocytes isolated from the animals one day, seven days, or eleven days afterward. The antigenic potential of Z15 was analyzed using a bioinformatic approach in predicting sequences in SpA and Z15 dually presented by class I and class II human MHC alleles covering the majority of the population. A peptide in SpA identified as a potential T cell epitope cross reacting with a known epitope in a microbial antigen was eliminated by miniaturization. These results demonstrate that Z15_EAK is a potential platform for generating antibody depots by which the impacts of Fc-based biotherapeutics can be enhanced through spatiotemporal control.
Identifiants
pubmed: 30574644
doi: 10.1039/c8bm01220b
pmc: PMC6410374
mid: NIHMS1004467
doi:
Substances chimiques
Epitopes, T-Lymphocyte
0
Fluorescent Dyes
0
Histocompatibility Antigens Class I
0
Histocompatibility Antigens Class II
0
Immunoglobulin G
0
Interleukin-6
0
Peptides
0
Staphylococcal Protein A
0
Tumor Necrosis Factor-alpha
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
760-772Subventions
Organisme : NIAID NIH HHS
ID : R01 AI123392
Pays : United States
Organisme : NIAID NIH HHS
ID : R21 AI139828
Pays : United States
Références
Science. 2002 Apr 12;296(5566):301-5
pubmed: 11951032
Nat Biotechnol. 2003 Oct;21(10):1171-8
pubmed: 14520402
Diabetes Metab Res Rev. 2007 Jul;23(5):348-55
pubmed: 17216593
Trends Immunol. 2007 Nov;28(11):482-90
pubmed: 17964218
Rheumatology (Oxford). 2007 Dec;46(12):1828-34
pubmed: 18032541
J Phys Chem B. 2008 Jan 17;112(2):441-7
pubmed: 18088110
Cytokine. 2011 Jan;53(1):8-12
pubmed: 20870421
Biomaterials. 2011 Jan;32(1):249-57
pubmed: 20880580
BMC Bioinformatics. 2010 Nov 22;11:568
pubmed: 21092157
Immunogenetics. 2011 Jun;63(6):325-35
pubmed: 21305276
Biomacromolecules. 2011 Oct 10;12(10):3549-58
pubmed: 21863894
Pharm Res. 2012 Feb;29(2):490-9
pubmed: 21887597
Biotechnol Bioeng. 2012 Aug;109(8):1898-911
pubmed: 22592568
Mol Pharm. 2013 Mar 4;10(3):1035-44
pubmed: 23419203
Bioconjug Chem. 2013 May 15;24(5):803-10
pubmed: 23573960
Proc Natl Acad Sci U S A. 2013 May 28;110(22):E2046-53
pubmed: 23580623
J Clin Pharmacol. 2013 Sep;53(9):909-18
pubmed: 23832863
PLoS One. 2014 Mar 04;9(3):e90802
pubmed: 24594915
Biomaterials. 2014 Jun;35(19):5196-205
pubmed: 24680662
Nat Mater. 2014 Aug;13(8):829-36
pubmed: 24930032
Curr Top Microbiol Immunol. 2014;382:373-92
pubmed: 25116109
Acta Biomater. 2014 Nov;10(11):4759-4767
pubmed: 25117952
Clin Immunol. 2015 Sep;160(1):82-9
pubmed: 25805654
PLoS One. 2015 Aug 13;10(8):e0135451
pubmed: 26270649
J Control Release. 2016 May 28;230:1-12
pubmed: 27038493
J Vis Exp. 2016 Jun 27;(112):
pubmed: 27404995
Oncotarget. 2017 Jan 10;8(2):2485-2500
pubmed: 27705933
Front Immunol. 2016 Dec 12;7:580
pubmed: 28018347
Front Immunol. 2017 Mar 14;8:278
pubmed: 28352270
Eur J Biochem. 1986 May 2;156(3):637-43
pubmed: 2938951
Protein Eng. 1987 Feb-Mar;1(2):107-13
pubmed: 3507693
Biochemistry. 1981 Apr 28;20(9):2361-70
pubmed: 7236608
Biopolymers. 1994 May;34(5):663-72
pubmed: 8003624
J Mol Recognit. 1995 Jul-Aug;8(4):270-8
pubmed: 8588944
Biomaterials. 1995 Dec;16(18):1385-93
pubmed: 8590765
Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5688-92
pubmed: 8650153
Eur J Biochem. 1977 Sep;78(2):471-90
pubmed: 913410
Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10080-5
pubmed: 9294166
J Mol Biol. 1997 Oct 3;272(4):573-90
pubmed: 9325113
Biochemistry. 1998 Jan 6;37(1):129-36
pubmed: 9425032