Locating primary somatosensory cortex in human brain stimulation studies: experimental evidence.
Adult
Brain Mapping
/ methods
Discrimination, Psychological
/ physiology
Electromyography
Female
Hand
/ physiology
Humans
Magnetic Resonance Imaging
Male
Models, Neurological
Models, Statistical
Muscle, Skeletal
/ physiology
Scalp
Sensory Thresholds
/ physiology
Somatosensory Cortex
/ diagnostic imaging
Touch Perception
/ physiology
Transcranial Magnetic Stimulation
/ methods
Vibration
Young Adult
S1
SI
TDCS
TMS
vibrotactile
Journal
Journal of neurophysiology
ISSN: 1522-1598
Titre abrégé: J Neurophysiol
Pays: United States
ID NLM: 0375404
Informations de publication
Date de publication:
01 01 2019
01 01 2019
Historique:
pubmed:
24
12
2018
medline:
23
8
2019
entrez:
22
12
2018
Statut:
ppublish
Résumé
Transcranial magnetic stimulation (TMS) over human primary somatosensory cortex (S1) does not produce immediate outputs. Researchers must therefore rely on indirect methods for TMS coil positioning. The "gold standard" is to use individual functional and structural magnetic resonance imaging (MRI) data, but the majority of studies don't do this. The most common method to locate the hand area of S1 (S1-hand) is to move the coil posteriorly from the hand area of primary motor cortex (M1-hand). Yet, S1-hand is not directly posterior to M1-hand. We localized the index finger area of S1-hand (S1-index) experimentally in four ways. First, we reanalyzed functional MRI data from 20 participants who received vibrotactile stimulation to their 10 digits. Second, to assist the localization of S1-hand without MRI data, we constructed a probabilistic atlas of the central sulcus from 100 healthy adult MRIs and measured the likely scalp location of S1-index. Third, we conducted two experiments mapping the effects of TMS across the scalp on tactile discrimination performance. Fourth, we examined all available neuronavigation data from our laboratory on the scalp location of S1-index. Contrary to the prevailing method, and consistent with systematic review evidence, S1-index is close to the C3/C4 electroencephalography (EEG) electrode locations on the scalp, ~7-8 cm lateral to the vertex, and ~2 cm lateral and 0.5 cm posterior to the M1-hand scalp location. These results suggest that an immediate revision to the most commonly used heuristic to locate S1-hand is required. The results of many TMS studies of S1-hand need reassessment. NEW & NOTEWORTHY Noninvasive human brain stimulation requires indirect methods to target particular brain areas. Magnetic stimulation studies of human primary somatosensory cortex have used scalp-based heuristics to find the target, typically locating it 2 cm posterior to the motor cortex. We measured the scalp location of the hand area of primary somatosensory cortex and found that it is ~2 cm lateral to motor cortex. Our results suggest an immediate revision of the prevailing method is required.
Identifiants
pubmed: 30575432
doi: 10.1152/jn.00641.2018
pmc: PMC6383658
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Pagination
336-344Subventions
Organisme : Medical Research Council
ID : MR/K014250/1
Pays : United Kingdom
Références
Front Psychol. 2018 Oct 18;9:1989
pubmed: 30405482
Front Hum Neurosci. 2014 Sep 02;8:658
pubmed: 25228867
J Magn Reson Imaging. 2011 Aug;34(2):429-37
pubmed: 21780235
Electroencephalogr Clin Neurophysiol. 1993 Jan;86(1):1-6
pubmed: 7678386
Neuroreport. 2000 Sep 28;11(14):3269-73
pubmed: 11043562
Clin Neurophysiol. 2001 Nov;112(11):2154-8
pubmed: 11682355
Hum Brain Mapp. 2010 Aug;31(8):1272-80
pubmed: 20082330
Neuroimage. 2001 Feb;13(2):262-71
pubmed: 11162267
Curr Biol. 2018 Mar 19;28(6):R259-R261
pubmed: 29558640
Exp Brain Res. 2014 Mar;232(3):821-6
pubmed: 24306439
Curr Biol. 2018 Mar 5;28(5):746-752.e5
pubmed: 29456139
PLoS One. 2017 Jun 22;12(6):e0178952
pubmed: 28640923
Brain Topogr. 2009 May;21(3-4):168-76
pubmed: 19404728
Electroencephalogr Clin Neurophysiol. 1997 Feb;105(1):24-8
pubmed: 9118835
Neuroreport. 1993 May;4(5):569-70
pubmed: 8513141
Electroencephalogr Clin Neurophysiol. 1994 Aug;91(2):79-92
pubmed: 7519144
Neuroimage. 1999 Jul;10(1):63-83
pubmed: 10385582
Psychon Bull Rev. 2018 Dec;25(6):2083-2101
pubmed: 29557067
Neuroimage. 2004 Jan;21(1):99-111
pubmed: 14741647
J Neurophysiol. 2019 Jan 1;121(1):152-162
pubmed: 30517062
Clin Neurophysiol. 2015 Jun;126(6):1071-1107
pubmed: 25797650
Cortex. 2010 Jan;46(1):118-20
pubmed: 19371865
Percept Psychophys. 1983 Feb;33(2):113-20
pubmed: 6844102
J Neurosci. 2004 Oct 27;24(43):9698-702
pubmed: 15509758
Cereb Cortex. 2008 Oct;18(10):2341-51
pubmed: 18245039
Brain. 1997 Jan;120 ( Pt 1):141-57
pubmed: 9055804
Electroencephalogr Clin Neurophysiol. 1993 Jan;86(1):7-14
pubmed: 7678393
Clin Neurophysiol. 2009 Dec;120(12):2008-2039
pubmed: 19833552
Front Psychol. 2014 Feb 28;5:174
pubmed: 24592252
Clin Neurophysiol. 2012 Sep;123(9):1698-704
pubmed: 22647458
PLoS One. 2008;3(10):e3502
pubmed: 18958150
J Neurosci Methods. 2018 Apr 1;299:34-44
pubmed: 29471064
Neuroimage. 2015 Oct 15;120:164-75
pubmed: 26188259
Spat Vis. 1997;10(4):433-6
pubmed: 9176952
Neuroimage. 2016 Sep;138:184-196
pubmed: 27233148
Neuroimage. 2009 May 15;46(1):64-72
pubmed: 19233295
Neuroimage. 2005 May 1;25(4):1325-35
pubmed: 15850749
Sci Adv. 2018 Sep 05;4(9):eaar6904
pubmed: 30191174
Lancet. 1985 May 11;1(8437):1106-7
pubmed: 2860322
Hum Brain Mapp. 2004 May;22(1):1-14
pubmed: 15083522