First virtual screening and experimental validation of inhibitors targeting GES-5 carbapenemase.
Anti-Bacterial Agents
/ chemistry
Bacterial Proteins
/ chemistry
Computer Simulation
High-Throughput Screening Assays
Molecular Docking Simulation
/ methods
Molecular Structure
Protein Binding
Pseudomonas aeruginosa
/ chemistry
Small Molecule Libraries
/ chemistry
Structure-Activity Relationship
Thermodynamics
beta-Lactamase Inhibitors
/ chemistry
beta-Lactamases
/ chemistry
Antibiotic resistance
Carbapenemases
Docking
GES-5 Guyana extended-spectrum-lactamase
In vitro inhibition
Virtual screening
Journal
Journal of computer-aided molecular design
ISSN: 1573-4951
Titre abrégé: J Comput Aided Mol Des
Pays: Netherlands
ID NLM: 8710425
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
received:
02
08
2018
accepted:
20
12
2018
pubmed:
4
1
2019
medline:
7
2
2020
entrez:
4
1
2019
Statut:
ppublish
Résumé
The worldwide spread of beta-lactamases with hydrolytic activity extended to last resort carbapenems is aggravating the antibiotic resistance problem and endangers the successful antimicrobial treatment of clinically relevant pathogens. As recently highlighted by the World Health Organization, new strategies to contain antimicrobial resistance are urgently needed. Class A carbapenemases include members of the KPC, GES and SFC families. These enzymes have the ability to hydrolyse penicillins, cephalosporins and carbapenems, while also being less susceptible to available beta-lactam inhibitors, such as clavulanic acid. The KPC family is the most prevalent. It is mostly found on plasmids in Klebsiella pneumoniae, meaning that great amounts of attention, in terms of inhibitor design and structural biology, have been dedicated to it, whereas no efforts have yet been dedicated to GES-type enzymes, despite their ability to rapidly and horizontally disseminate. We herein report the first in silico screening against GES-5, which is the most dangerous GES-type beta-lactamase, using a library of 800K commercially available candidates that all share drug-like properties, such as their MW, logP, rotatable bonds and HBA/HBD atoms. The best screening results were filtered to enrich the number of different chemotypes, and then submitted to molecular docking. The 34 most promising candidates were selected for in vitro validation in biochemical assays against recombinant GES-5. Six hits acted as inhibitors, in the high micromolar range, towards GES-5 and led to the identification of the first, novel chemotypes with inhibitory activity against this clinically relevant carbapenemase.
Identifiants
pubmed: 30603820
doi: 10.1007/s10822-018-0182-2
pii: 10.1007/s10822-018-0182-2
doi:
Substances chimiques
Anti-Bacterial Agents
0
Bacterial Proteins
0
Small Molecule Libraries
0
beta-Lactamase Inhibitors
0
beta-Lactamases
EC 3.5.2.6
carbapenemase
EC 3.5.2.6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
295-305Références
PLoS One. 2018 Nov 29;13(11):e0203241
pubmed: 30496182
Acta Crystallogr D Biol Crystallogr. 2007 Sep;63(Pt 9):982-92
pubmed: 17704567
Eur J Med Chem. 2010 Sep;45(9):4270-9
pubmed: 20633962
J Am Chem Soc. 2012 Dec 5;134(48):19512-5
pubmed: 23148776
ChemMedChem. 2018 Apr 6;13(7):713-724
pubmed: 29356380
Biochemistry. 2015 Jan 20;54(2):588-97
pubmed: 25485972
Nature. 1992 Oct 22;359(6397):700-5
pubmed: 1436034
Microb Drug Resist. 2012 Oct;18(5):471-8
pubmed: 22554004
ACS Med Chem Lett. 2017 Nov 26;9(1):45-50
pubmed: 29348810
J Biol Chem. 1998 Oct 9;273(41):26714-21
pubmed: 9756914
J Med Chem. 2013 Sep 12;56(17):6560-72
pubmed: 23688234
ChemMedChem. 2014 Jul;9(7):1501-11
pubmed: 24616267
J Chem Inf Model. 2015 Oct 26;55(10):2256-74
pubmed: 26355717
J Med Chem. 2007 Nov 15;50(23):5644-54
pubmed: 17956081
Curr Drug Targets. 2016;17(9):983-1005
pubmed: 26424401
J Med Chem. 2014 Jun 26;57(12):5449-58
pubmed: 24882105
J Biol Chem. 2016 Oct 14;291(42):22196-22206
pubmed: 27590339
Acta Crystallogr D Biol Crystallogr. 2002 Feb;58(Pt 2):267-74
pubmed: 11807251
J Am Chem Soc. 2005 Apr 6;127(13):4632-9
pubmed: 15796528
J Chem Inf Model. 2007 Mar-Apr;47(2):279-94
pubmed: 17381166
Antimicrob Agents Chemother. 2000 Mar;44(3):622-32
pubmed: 10681329
Prog Clin Biol Res. 1989;289:433-44
pubmed: 2726808
Curr Med Chem. 2014;21(12):1405-34
pubmed: 24180276
Antimicrob Agents Chemother. 2018 Apr 26;62(5):
pubmed: 29507063
Nat Protoc. 2006;1(2):550-3
pubmed: 17191086
J Med Chem. 2008 Apr 24;51(8):2502-11
pubmed: 18333608
J Glob Antimicrob Resist. 2016 Jun;5:47-50
pubmed: 27436466
Clin Microbiol Infect. 2008 Jan;14 Suppl 1:75-81
pubmed: 18154530
PLoS One. 2015 Sep 04;10(9):e0136813
pubmed: 26340563
J Am Chem Soc. 2012 Nov 7;134(44):18275-85
pubmed: 23030300
Antimicrob Agents Chemother. 2017 Feb 23;61(3):
pubmed: 28052846
PLoS One. 2013 Oct 22;8(10):e77558
pubmed: 24167577
Bioorg Med Chem Lett. 2010 Jun 1;20(11):3416-9
pubmed: 20452208
Biochem Pharmacol. 1973 Dec 1;22(23):3099-108
pubmed: 4202581
Biochim Biophys Acta. 2013 Jan;1834(1):169-81
pubmed: 23000429
Sci Rep. 2017 Dec 18;7(1):17716
pubmed: 29255163
Antimicrob Agents Chemother. 2009 Nov;53(11):4930-3
pubmed: 19738007
Clin Microbiol Infect. 2012 May;18(5):413-31
pubmed: 22507109
Curr Med Chem. 2006;13(2):223-41
pubmed: 16472214
Chem Biol. 2001 Jun;8(6):593-611
pubmed: 11410378
Int J Antimicrob Agents. 2006 Nov;28(5):481-3
pubmed: 17000087