Knocking Out MicroRNA Genes in Rice with CRISPR-Cas9.
CRISPR-Cas9
Genome editing
MicroRNAs
Rice
SSCP
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2019
2019
Historique:
entrez:
6
1
2019
pubmed:
6
1
2019
medline:
18
6
2019
Statut:
ppublish
Résumé
MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in plant development and stress responses. Loss-of-function analysis of miRNA genes has been traditionally challenging due to lack of appropriate knockout tools. In this chapter, we describe a method of using CRISPR-Cas9 for knocking out microRNA genes in rice by Agrobacterium-mediated transformation. We also demonstrate single-strand conformation polymorphism (SSCP) as an effective genotyping method for screening CRISPR-Cas9-induced mutations.
Sections du résumé
BACKGROUND
MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in plant development and stress responses. Loss-of-function analysis of miRNA genes has been traditionally challenging due to lack of appropriate knockout tools. In this chapter, we describe a method of using CRISPR-Cas9 for knocking out microRNA genes in rice by Agrobacterium-mediated transformation. We also demonstrate single-strand conformation polymorphism (SSCP) as an effective genotyping method for screening CRISPR-Cas9-induced mutations.
Identifiants
pubmed: 30610632
doi: 10.1007/978-1-4939-8991-1_9
doi:
Substances chimiques
MicroRNAs
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
109-119Références
Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687
doi: 10.1016/j.cell.2009.01.046
pubmed: 19239888
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297
doi: 10.1016/S0092-8674(04)00045-5
pubmed: 14744438
Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459
doi: 10.1038/nrg3462
pubmed: 23732335
Chen X (2012) Small RNAs in development – insights from plants. Curr Opin Genet Dev 22(4):361–367
doi: 10.1016/j.gde.2012.04.004
pubmed: 22578318
pmcid: 3419802
Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037
doi: 10.1038/ng2079
pubmed: 17643101
Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D (2010) A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6(7):e1001031
doi: 10.1371/journal.pgen.1001031
pubmed: 20661442
pmcid: 2908682
Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G (2012) Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24(2):415–427
doi: 10.1105/tpc.111.094144
pubmed: 22345490
pmcid: 3315224
Reichel M, Li Y, Li J, Millar AA (2015) Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs. Plant Biotechnol J 13(7):915–926
doi: 10.1111/pbi.12327
pubmed: 25600074
Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169(2):971–985
doi: 10.1104/pp.15.00636
pubmed: 26297141
pmcid: 4587453
Zhang Y, Zhang F, Li XH, Christian M, Bogdanove AJ, Qi YP, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27
doi: 10.1104/pp.112.205179
pubmed: 23124327
Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82
doi: 10.1093/nar/gkr218
pubmed: 21493687
pmcid: 3130291
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823
doi: 10.1126/science.1231143
pubmed: 23287718
pmcid: 3795411
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821
doi: 10.1126/science.1225829
pubmed: 22745249
pmcid: 6286148
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L, Gao C (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688
doi: 10.1038/nbt.2650
pubmed: 23929338
Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232
doi: 10.1038/cr.2013.114
pubmed: 23958582
pmcid: 3790235
Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER, Zhang Y, Qi Y (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018
doi: 10.1038/nplants.2017.18
pubmed: 28211909
Tang X, Zheng X, Qi Y, Zhang D, Cheng Y, Tang A, Voytas DF, Zhang Y (2016) A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol Plant 9(7):1088–1091
doi: 10.1016/j.molp.2016.05.001
pubmed: 27212389
Zhou J, Deng K, Cheng Y, Zhong Z, Tian L, Tang X, Tang A, Zheng X, Zhang T, Qi Y, Zhang Y (2017) CRISPR-Cas9 based genome editing reveals new insights into MicroRNA function and regulation in rice. Front Plant Sci 8:1598. https://doi.org/10.3389/fpls.2017.01598
doi: 10.3389/fpls.2017.01598
pubmed: 28955376
pmcid: 5602353
Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691
doi: 10.1038/nbt.2654
pubmed: 23929339
pmcid: 4078740
Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691–693
doi: 10.1038/nbt.2655
pubmed: 23929340
Paul JW 3rd, Qi Y (2016) CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep 35(7):1417–1427
doi: 10.1007/s00299-016-1985-z
pubmed: 27114166
Cui W, Liu W, Wu G (1995) A simple method for the transformation of agrobacterium tumefaciens by foreign DNA. Chin J Biotechnol 11(4):267–274
pubmed: 8739105
Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with agrobacterium allows high-speed transformation of rice. Plant J 47:969–976
doi: 10.1111/j.1365-313X.2006.02836.x
pubmed: 16961734
Zheng XL, Yang SX, Zhang DW, Zhong ZH, Tang X, Deng KJ, Zhou JP, Qi YP, Zhang Y (2016) Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Rep 35(7):1545–1554
doi: 10.1007/s00299-016-1967-1
pubmed: 27007717